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Goals
• Test QCD to maximum precision at colliders 

• Maximize sensitivity to new physics 

• Obtain high precision determination of 
fundamental parameters 

• Determine renormalization scales without 
ambiguity 

• Eliminate scheme dependence
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Predictions for physical observables cannot depend on theoretical 
conventions such as the renormalization scheme or initial scale choice
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Lessons from QED

• No Renormalization Scale Ambiguity 

• Dressed Photon Propagator sums all β terms 

• New Scale at Every Order, Every Skeleton 
Graph 

• Predictions are  scheme independent 

• QCD  becomes Abelian QED in Zero Color 
Limit 

• Grand Unification:  Use same methods for all 
couplings

NC ! 0

Can use MS scheme in QED; answers are scheme independent 
Analytic extension: coupling is complex for timelike argument



Electron-Electron Scattering in QED
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Gell-Mann--Low Effective Charge
• Dressed Photon Propagator sums all β (vacuum polarization) contributions, 

proper and improper 
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• Initial Scale Choice t0 is Arbitrary! 

• Any renormalization scheme can be used ↵(t)! ↵MS(e�
5
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A key problem in making precise perturbative QCD predictions is the uncertainty in determining
the renormalization scale µ of the running coupling αs(µ

2). The purpose of the running coupling in
any gauge theory is to sum all terms involving the β function; in fact, when the renormalization scale
is set properly, all non-conformal β ̸= 0 terms in a perturbative expansion arising from renormaliza-
tion are summed into the running coupling. The remaining terms in the perturbative series are then
identical to that of a conformal theory; i.e., the corresponding theory with β = 0. The resulting
scale-fixed predictions using the “principle of maximum conformality” (PMC) are independent of
the choice of renormalization scheme – a key requirement of renormalization group invariance. The
results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The
PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations
between observables, and the scale-setting method used in lattice gauge theory. The number of
active flavors nf in the QCD β function is also correctly determined. We discuss several methods
for determining the PMC scale for QCD processes. We show that a single global PMC scale, valid
at leading order, can be derived from basic properties of the perturbative QCD cross section. The
elimination of the renormalization scale ambiguity and the scheme dependence using the PMC will
not only increase the precision of QCD tests, but it will also increase the sensitivity of collider
experiments to new physics beyond the Standard Model.

PACS numbers: 11.15.Bt, 12.20.Ds

I. INTRODUCTION

A key difficulty in making precise perturbative QCD predictions is the uncertainty in determining the renormaliza-
tion scale µ of the running coupling αs(µ2). It is common practice to simply guess a physical scale µ = Q of order
of a typical momentum transfer Q in the process, and then vary the scale over a range Q/2 and 2Q. This procedure
is clearly problematic since the resulting fixed-order pQCD prediction will depend on the choice of renormalization
scheme; it can even predict negative QCD cross sections at next-to-leading-order [1].
The purpose of the running coupling in any gauge theory is to sum all terms involving the β function; in fact,

when the renormalization scale µ is set properly, all non-conformal β ̸= 0 terms in a perturbative expansion arising
from renormalization are summed into the running coupling. The remaining terms in the perturbative series are
then identical to that of a conformal theory; i.e., the theory with β = 0. The divergent “renormalon” series of order
αn
s β

nn! does not appear in the conformal series. Thus as in quantum electrodynamics, the renormalization scale µ is
determined unambiguously by the “Principle of Maximal Conformality (PMC)”. This is also the principle underlying
BLM scale setting [2]
It should be recalled that there is no ambiguity in setting the renormalization scale in QED. In the standard Gell-

Mann–Low scheme for QED, the renormalization scale is simply the virtuality of the virtual photon [3]. For example,
in electron-muon elastic scattering, the renormalization scale is the virtuality of the exchanged photon, spacelike
momentum transfer squared µ2 = q2 = t. Thus

α(t) =
α(t0)

1−Π(t, t0)
(1)

where

Π(t, t0) =
Π(t)−Π(t0)

1−Π(t0)
(2)
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nn! does not appear in the conformal series. Thus as in quantum electrodynamics, the renormalization scale µ is
determined unambiguously by the “Principle of Maximal Conformality (PMC)”. This is also the principle underlying
BLM scale setting [2]
It should be recalled that there is no ambiguity in setting the renormalization scale in QED. In the standard Gell-

Mann–Low scheme for QED, the renormalization scale is simply the virtuality of the virtual photon [3]. For example,
in electron-muon elastic scattering, the renormalization scale is the virtuality of the exchanged photon, spacelike
momentum transfer squared µ2 = q2 = t. Thus

α(t) =
α(t0)

1−Π(t, t0)
(1)

where

Π(t, t0) =
Π(t)−Π(t0)

1−Π(t0)
(2)

In the (physical) Gell Mann-Low scheme, the momentum scale of the running 
coupling is the virtuality of the exchanged photon; independent of initial scale.

For any other scale choice an infinite set of diagrams must be taken into 
account to obtain the correct result!

In any other scheme, the correct scale displacement must be used
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sums all vacuum polarization contributions to the dressed photon propagator, both proper and improper. (Here
Π(t) = Π(t, 0) is the sum of proper vacuum polarization insertions, subtracted at t = 0). Formally, one can choose
any initial renormalization scale µ2

0 = t0, since the final result when summed to all orders will be independent
of t0. This is the invariance principle used to derive renormalization group results such as the Callan-Symanzik
equations [4, 5]. However, the formal invariance of physical results under changes in t0 does not imply that there is no
optimal scale. In fact, as seen in QED, the scale choice µ2 = q2, the photon virtuality, immediately sums all vacuum
polarization contributions to all orders exactly in the conventional Gell-Mann-Low scheme. With any other choice of
scale, one will recover the same result, but only after summing an infinite number of vacuum polarization corrections.
Thus, although the initial choice of renormalization scale t0 is arbitrary, the final scale t which sums the vacuum

polarization corrections is unique and unambiguous. The resulting perturbative series is identical to the conformal
series with zero β-function. In the case of muonic atoms, the modified muon-nucleus Coulomb potential is precisely
−Zα(−q⃗ 2)/q⃗ 2; i.e., µ2 = −q⃗2. Again, the renormalization scale is unique.
One can employ other renormalization schemes in QED, such as the MS scheme, but the physical result will be

the same once one allows for the relative displacement of the scales of each scheme. For example, one can start with
the result in the MS scheme for spacelike argument q2 = −Q2, for the standard one-loop charged lepton pair vacuum
polarization contribution to the photon propagator using dimensional regularization:

log
µ2
MS

m2
ℓ

= 6

∫ 1

0
dxx(1 − x) log

m2
ℓ +Q2x(1− x)

m2
ℓ

, (3)

which becomes at large Q2

log
µ2
MS

m2
ℓ

= log
Q2

m2
ℓ

− 5/3; (4)

i.e., µ2
MS

= Q2e−5/3. Thus if Q2 >> 4m2
ℓ , we can identify

αMS(e
−5/3q2) = αGM−L(q

2). (5)

The e−5/3 displacement of renormalization scales between the MS and Gell-Mann–Low schemes is a result of the
convention [6] which was chosen to define the minimal dimensional regularization scheme. One can use another
definition of the renormalization scheme, but the final physical prediction cannot depend on the convention. This
invariance under choice of scheme is a consequence of the transitivity property of the renormalization group [3, 7–9].
The same principle underlying renormalization scale-setting in QED must also hold in QCD since the nf terms

in the QCD β function have the same role as the lepton Nℓ vacuum polarization contributions in QED. QCD and
QED share the same Yang-Mills Lagrangian. In fact, one can show [10] that QCD analytically continues as a

function of NC to Abelian theory when NC → 0 at fixed α = CFαs with CF = N2
C−1
2NC

. For example, at lowest order

βQCD
0 = 1

4π

(

11
3 NC − 2

3nf

)

→ − 1
4π

2
3nf at NC = 0. Thus the same scale-setting procedure must be applicable to all

renormalizable gauge theories.
Thus there is a close correspondence between the QCD renormalization scale and that of the analogous QED process.

For example, in the case of e+e− annihilation to three jets, the PMC/BLM scale is set by the gluon jet virtuality, just
as in the corresponding QED reaction. The specific argument of the running coupling depends on the renormalization
scheme because of their intrinsic definitions; however, the actual numerical prediction is scheme-independent.
The basic procedure for PMC/BLM scale setting is to shift the renormalization scale so that all terms involving

the β function are absorbed into the running coupling. The remaining series is then identical with a conformal theory
with β = 0. Thus, an important feature of the PMC is that its QCD predictions are independent of the choice of
renormalization scheme. The PMC procedure also agrees with QED in the NC → 0 limit.
The determination of the PMC-scale for exclusive processes is often straightforward. For example, consider the

process e+e− → cc̄ → cc̄g∗ → cc̄bb̄, where all the flavors and momenta of the final-state quarks are identified. The nf

terms at NLO come from the quark loop in the gluon propagator. Thus the PMC scale for the differential cross section
in the MS scheme is given simply by the MS scheme displacement of the gluon virtuality: µ2

PMC = e−5/3(pb + pb̄)
2.

In practice, one can identify the PMC/BLM scale for QCD by varying the initial renormalization scale µ2
0 to identify

all of the β-dependent nonconformal contributions. At lowest order β0 = 1
4π (11/3NC − 2/3nf). Thus at NLO one can

simply use the dependence on the number of flavors nf which arises from the quark loops associated with ultraviolet
renormalization as a marker for β0.
In QCD, the nf terms also arise from the renormalization of the three-gluon and four-gluon vertices as well as from

gluon wavefunction renormalization.

Q2�m2
`�! log
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`

� 5
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PMC = e−5/3(pb + pb̄)
2.

In practice, one can identify the PMC/BLM scale for QCD by varying the initial renormalization scale µ2
0 to identify
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Example: ee-scattering
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QED One-Loop Vacuum Polarization
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All-orders lepton-loop corrections to dressed photon propagator
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• No renormalization scale ambiguity!   !

• Gauge Invariant.  Dressed photon propagator 

• Sums all vacuum polarization, non-zero beta terms into running 
coupling.   This is the purpose of the running coupling! 

• Two separate physical scales: t, u = photon virtuality 

• If one chooses a different initial scale, one must sum an infinite number 
of graphs -- but always recover same result!   

• Number of active leptons correctly set  

• Analytic: reproduces correct behavior at lepton mass thresholds 

• No renormalization scale ambiguity!    

Electron-Electron Scattering in QED

t u
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New renormalization scale at each order of pQED

Electron-Electron Scattering in QED

Renormalization scheme independent at each order

Independent of initial scale μ0

Abelian theory is the analytic limit QCD at Nc = 0 

Each “skeleton” graph has its own renormalization scale
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ray Space Telescope, a collaboration with the U.S. Department of Energy
(DOE) and international partners...

» read more

October 15, 2008

Stanford Linear Accelerator Center Renamed SLAC National
Accelerator Laboratory

Menlo Park, Calif.—The U.S. Department of Energy (DOE) has renamed
Stanford Linear Accelerator Center the SLAC National Accelerator Laboratory.
What's in a name? Great past, great future, great science...

» read more

August 26, 2008

GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-
Ray Sky

The U.S. Department of Energy (DOE) and NASA announced today that the
Gamma-Ray Large Area Space Telescope (GLAST) has revealed its first all-sky
map in gamma rays. The onboard Large Area Telescope's (LAT) all-sky
image...

» read more

July 9, 2008

Physicists Discover New Particle: The Bottom-most
"Bottomonium"

Thirty years ago, particle physics delighted in discovering the "bottomonium"
family—the set of particles that contain both a bottom quark and an anti-
bottom quark but are bound together with different energies. Ever since,
researchers have sought...

» read more

» more press releases
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Asymptotic unification of !
strong, electromagnetic, and weak forces in 

analytic pinch scheme

QED

QCD

Supersymmetric!
SU(5)

Binger, sjb

GUT: Must use the same scale - setting procedure for QED, QCD
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limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

QCD ⇥ Abelian Gauge Theory

limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

Huet, sjb

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD  
must be applicable to QED

CF =
N2

C � 1
2NC
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• No renormalization scale ambiguity in QED  

• No guessing of renormalization scale or range! 

• Physical predictions cannot depend on renormalization scheme 

• Gell Mann-Low QED Coupling defined from physical observable  

• Running Coupling sums all Vacuum Polarization Contributions, all β 
terms 

• Recover conformal series 

• Renormalization Scale in QED scheme: Identical to Photon Virtuality 

• Analytic: Reproduces lepton-pair thresholds -- number of active leptons 
set 

• Examples:  muonic atoms, g-2, Lamb Shift 

• Time-like and Space-like QED Coupling related by analyticity 

• Dressed Skeleton Expansion
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Example in QED: Muonic Atoms

µR

µR = Q

µF = µR

Q/2 < µR < 2Q
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Q/2 < µR < 2Q
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Scale is unique:  Tested to ppm
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�QED(0)
1��(q2)

µ2
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This is very important!

This is very important!

This is very important!

This is very important!

Gyulassy: Higher Order VP verified to

0.1% precision in µ Pb

+



- Independent of the initial renormalization scale

- Obeys renormalization group properties;
renormalization scheme- and scale-invariance, transitivity, etc...

- The argument of the running coupling is the ‘final scale’ that resums all non-
conformal terms; a function of scheme and renormalization scale

a(τ, {ci})

A

B

C

D

E F

- Resummed perturbative QED = dressed 
skeleton expansion; 

- the perturbative coefficients are those of the 
would-be conformal theory

- Let’s give this lesson a name so we don’t forget:
The Principal of Maximum Conformality

and Stanford Linear Accelerator Center, Stanford Unioersity, Stanford, California 94305*

G. Peter Lepage
Institute for Aduanced Study, Princeton, New Jersey 08540

and Laboratory ofNuclear Studies, Cornell Unioersity, Ithaca, New York I4853*

Paul B.Mackenzie
Fermilab, Batavia, Illinois 6D51D
(Received 23 November 1982)

We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative
analyses in quantum chromodynamics (QCD) and other gauge theories. For aphelian theories the
method reduces to the standard criterion that only vacuum-polarization insertions contribute to the
effective coupling constant. Given a scheme, our procedure automatically determines the coupling-
constant scale appropriate to a particular process. This leads to a new criterion for the convergence
of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and
find that perturbation theory converges well for all processes other than the gluonic width of the Y.
Our analysis calls into question recent determinations of the QCD coupling constant based upon Y
decay.

I. INTRODUCTION the for orthopositronium is much

On some possible extensions 
of the Brodsky-Lepage-Mackenzie approach 
beyond the next-to-leading order 
G. Grunberg  
Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau, France 

and 

A.L. Kataev 1 
Randall Laboratory of Physics, University of Michigan. Ann Arbor, M148109-1120, USA 

Received 20 May 1991; revised manuscript received 20 January 1992 

Noting that the choice of  renormalization point advocated by Brodsky, Lepage and Mackenzie ( BLM ) is the flavor independent 
prescription which removes all f-dependence from the next-to-leading order coefficients, we consider the possible generalization 
which requires all higher order coefficients ri to be f-independent constants r,*. We point out that in QCD, setting ri= r,* is always 
possible, but leaves us with an ambiguous prescription. We consider an alternative possibility within the framework of  the BLM 
approach and apply the corresponding prescription to the next-to-next-to-leading approximation of trtot(e+e - ~hadrons)  in QCD. 
The analogous questions and the special features of the BLM and effective charge approaches in QED are also discussed. 

PHYSICAL REVIEW D VOLUME 51, NUMBER 7 1 APRIL

Commensurate scale relations in quantum chromodynamics

Stanley J. Brodsky
Stanford Linear Accelerator Center, Stanford University, Stanford, California 9)909

Hung Jung Lu*
Department of Physics, University of Maryland, College Park, Maryland 20742

(Received 4 May 1994)

We use the BLM method to relate perturbatively calculable observables in +CD, including the
annihilation ratio R +, , the heavy quark potential, and radiative corrections to structure function
sum rules. The commensurate scale relations connecting the effective charges for observables A and
B have the forin cry(Qq) = nor(Qg) (1+regis —P + ), where the coefficient rqg~ is independent
of the number of ffavors f contributing to coupling constant renormalization. The ratio of scales
Qz/Qir is unique at leading order and guarantees that the observables A and B pass through new
quark thresholds at the same physical scale. We also show that the commensurate scales satisfy the
renormalization group transitivity rule which ensures that predictions in PQCD are independent of
the choice of an intermediate renormalization scheme C. In particular, scale-Axed predictions can
be made without reference to theoretically constructed renormalization schemes such as MS. +CD
can thus be tested in a new and precise way by checking that the observables track both in their
relative normalization and in their commensurate scale dependence. The generalization of the BLM
procedure to higher order assigns a different renormalization scale for each order in the perturbative
series. The scales are determined by a systematic resummation of running coupling constant effects.
The application of this procedure to relate known physical observables in +CD gives rather simple
results. In particular, we find that up to light-by-light-type corrections all terms involving (s,
and m in the relation between the annihilation ratio R + and the Bjorken sum rule for polarized
electroproduction are automatically absorbed into the renormalization scales. The final series has

Scale setting using the extended renormalization group and the principle of maximum
conformality: The QCD coupling constant at four loops

Stanley J. Brodsky1,* and Xing-Gang Wu1,2,†

1SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
2Department of Physics, Chongqing University, Chongqing 401331, China

(Received 30 November 2011; published 22 February 2012)

A key problem in making precise perturbative QCD predictions is to set the proper renormalization

scale of the running coupling. The extended renormalization group equations, which express the

invariance of the physical observables under both the renormalization scale- and scheme-parameter

transformations, provide a convenient way for estimating the scale- and scheme-dependence of the

physical process. In this paper, we present a solution for the scale equation of the extended renormal-

ization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/

Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all nonconformal f!ig terms in the perturbative

expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are

independent of the renormalization scheme. The PMC/BLM scales can be fixed order-by-order. As a

useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales

up to next-to-next-to-leading order. An explicit application for determining the scale setting of Reþe"ðQÞ
up to four loops is presented. By using the world average "MSðM Þ ¼ 0:1184& 0:0007, we obtain the

PHYSICAL REVIEW D 85, 034038 (2012)

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

The renormalization scale-setting problem in QCD
Xing-Gang Wua,⇤, Stanley J. Brodskyb, Matin Mojazab,c

a Department of Physics, Chongqing University, Chongqing 401331, PR China
b SLAC National Accelerator Laboratory, Stanford University, CA 94039, USA
c CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230, Denmark

a r t i c l e i n f o

Keywords:
Renormalization group
Renormalization scale
BLM/PMC
QCD

a b s t r a c t

A key problem in making precise perturbative QCD predictions is to set the proper renor-
malization scale of the running coupling. The conventional scale-setting procedure assigns
an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In
fact, this ad hoc procedure gives results which depend on the choice of the renormaliza-
tion scheme, and it is in conflict with the standard scale-setting procedure used in QED.
Predictions for physical results should be independent of the choice of the scheme or other
theoretical conventions. We review current ideas and points of view on how to deal with
the renormalization scale ambiguity and show how to obtain renormalization scheme-
and scale-independent estimates.We begin by introducing the renormalization group (RG)
equation and an extended version, which expresses the invariance of physical observ-
ables under both the renormalization scheme and scale-parameter transformations. The
RG equation provides a convenient way for estimating the scheme- and scale-dependence

Review of past
30 years development

Systematic All-Orders Method to Eliminate Renormalization-Scale and
Scheme Ambiguities in Perturbative QCD

Matin Mojaza*

CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230 Odense, Denmark
and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Stanley J. Brodsky†

SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Xing-Gang Wu‡

Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China
(Received 13 January 2013; published 10 May 2013)

We introduce a generalization of the conventional renormalization schemes used in dimensional

regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative

QCD predictions, exposes the general pattern of nonconformal f!ig terms, and reveals a special

degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the

argument of the running coupling order by order in perturbative QCD in a form which can be readily

automatized. The new method satisfies all of the principles of the renormalization group and eliminates an

unnecessary source of systematic error.

PRL 110, 192001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
10 MAY 2013

14

Principle of Maximum Conformality (PMC)



Features of BLM/PMC

• Predictions are scheme-independent at every order!

• Matches conformal series!

• No n! Renormalon growth of pQCD series!

• New scale appears at each order; nF determined at each order - matches virtuality of 
quark loops!

• Multiple Physical Scales Incorporated (Hoang, Kuhn, Tuebner, sjb)!

• Rigorous: Satisfies all Renormalization Group Principles!

• Realistic Estimate of Higher-Order Terms!

• Reduces to standard QED scale!

• GUT: Must use the same scale setting procedure for QED, QCD!

• Eliminates unnecessary theory error!

• Maximal sensitivity to new physics!

• Commensurate Scale Relations between observables: Generalized Crewther Relation   
(Kataev, Lu, Rathsman, sjb)!

• Reduces to BLM at NLO:  Example: BFKL intercept (Fadin, Kim, Lipatov, Pivovarov, sjb)

NC ! 0

15
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BLM/PMC: Set Scales

How do we identify the β terms?

BLM: Use nf dependence of β0 and β1



Principle of Maximum Conformality (PMC)

• Subtract extra constant δ in dimensional regularization. 
Defines new scheme Rδ"

!

• Coefficients of δ identify β terms !"

• Shift β terms to argument of running coupling              at 
each order n (analogous to all-orders vacuum polarization 
summation in QED)"

• Resulting PQCD series matches β= 0 conformal series "

• scheme-independent predictions at each computed order "

• almost independent of initial scale μ0

log 4⇡ � �E � � MS : � = 0

↵s(Q2
n)

M. Mojaza, Xing-Gang Wu, sjb
17

(δ: Arbitrary constant!)



9th Summer School in Theoretical Physics, Chongqing, Matin Mojaza

In dim. reg.         poles come in powers of [Bollini & Gambiagi, ‘t Hooft & Veltman, ’72] 1/✏

2

subtracted in addition to the standard subtraction
ln 4⇡ � �E of the MS-scheme. The �-subtraction defines
an infinite set of renormalization schemes which we call
�-Renormalization (R�) schemes; since physical results
cannot depend on the choice of scheme, predictions must
be independent of �. The R�-scheme exposes the gen-
eral pattern of nonconformal {�i}-terms, and it reveals a
special degeneracy of the terms in the perturbative coef-
ficients which allows us to resum the perturbative series.
The resummed series matches the conformal series, which
is itself free of any scheme and scale ambiguities as well
as being free of a divergent renormalon series. It is the
final expression one should use for physical predictions.
It also makes it possible to setup an algorithm for au-
tomatically computing the conformal series and setting
the e↵ective scales for the coupling at each perturbative
order.

II. THE �-RENORMALIZATION SCHEME

In dimensional regularization logarithmically divergent
integrals are regularized by computing them in d = 4�2✏
dimensions [25–28]. This requires the following transfor-
mation of the integration measure and introduction of an
arbitrary mass scale µ:

Z

d4p ! µ2✏

Z

d4�2✏p . (1)

Divergences are then separated as 1/✏ poles and can be
absorbed into redefinitions of the couplings. The choice
of subtraction procedure is known as the renormalization

scheme and is chosen at the theorist’s convenience. To
avoid dealing with coupling constants changing dimen-
sionality as a function of ✏ one rescales the the couplings
as well with the mass scale µ in the d = 4� 2✏ theory. In
particular, for QCD one rewrites the bare gauge coupling
a0 = ↵0/4⇡ = g2/(4⇡)2 as:

a0 = µ2✏ZaSaS , (2)

where aS is the renormalized gauge coupling under a spe-
cific renormalization scheme S and ZaS is the renormal-
ization constant of the coupling. The mass scale µ is
now understood as the renormalization scale. The bare
coupling must be independent of the arbitrary scale µ,
thus

µ2 da0
dµ2

= 0. (3)

Using this and the expansions

µ2 daS
dµ2

= �✏aS + �(aS) , (4)

�(a) = �a2
1
X

i=0

�ia
i , (5)

Za = 1 +
1
X

i=1

zia
i , (6)

it is easily derived that:
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a4 + · · ·

and the �i coe�cients are known up to �3, or four loops
[29]. The coe�cients �i are renormalization-scheme de-
pendent; however, it is easy to demonstrate by a general
scheme-transformation that the first two coe�cients �0

and �1 are universal for all mass-independent renormal-
ization schemes.
In the minimal subtraction (MS) scheme [30] one ab-

sorbs the 1/✏ poles appearing in loop integrals which
come in powers of

ln
µ2

⇤2
+

1

✏
+ c , (8)

where c is the finite part of the integral. Since anything
can be hidden into infinity, one can subtract any finite
part as well with the pole. This is equivalent to redefin-
ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
di↵ers from the MS-scheme by an additional absorption
of the term ln(4⇡)� �E , which corresponds to redefining
µ to:

µ2 = µ2
MS

exp(ln 4⇡ � �E) . (9)

We will generalize this by defining the
�-Renormalization scheme, R�, where one absorbs
ln(4⇡)� �E � �, i.e.

µ2 = µ2
� exp(ln 4⇡ � �E � �) , (10)

where � is an arbitrary finite number, and by appropriate
choice will connect all MS-type schemes. In particular1:

R0 = MS , (11)

Rln 4⇡��E = MS . (12)

The scheme-transformation between di↵erent R� cor-
responds simply to a displacement in their corresponding
scales, i.e.

µ2
�2 = µ2

�1 exp(�2 � �1) . (13)

In particular:

µ2
� = µ2

MS
exp(�) . (14)

1
Note that we have chosen MS as the reference scheme for R0.

This is done since most results today are known in this scheme;

however there is nothing special about MS, and R0 can be rede-

fined to be any other MS-scheme

In the modified minimal subtraction scheme (MS-bar) one subtracts together 
with the pole a constant [Bardeen, Buras, Duke, Muta (1978) on DIS results]:  

2
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absorbed into redefinitions of the couplings. The choice
of subtraction procedure is known as the renormalization

scheme and is chosen at the theorist’s convenience. To
avoid dealing with coupling constants changing dimen-
sionality as a function of ✏ one rescales the the couplings
as well with the mass scale µ in the d = 4� 2✏ theory. In
particular, for QCD one rewrites the bare gauge coupling
a0 = ↵0/4⇡ = g2/(4⇡)2 as:

a0 = µ2✏ZaSaS , (2)

where aS is the renormalized gauge coupling under a spe-
cific renormalization scheme S and ZaS is the renormal-
ization constant of the coupling. The mass scale µ is
now understood as the renormalization scale. The bare
coupling must be independent of the arbitrary scale µ,
thus

µ2 da0
dµ2

= 0. (3)

Using this and the expansions

µ2 daS
dµ2

= �✏aS + �(aS) , (4)

�(a) = �a2
1
X

i=0

�ia
i , (5)

Za = 1 +
1
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i , (6)

it is easily derived that:
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a4 + · · ·

and the �i coe�cients are known up to �3, or four loops
[29]. The coe�cients �i are renormalization-scheme de-
pendent; however, it is easy to demonstrate by a general
scheme-transformation that the first two coe�cients �0

and �1 are universal for all mass-independent renormal-
ization schemes.
In the minimal subtraction (MS) scheme [30] one ab-

sorbs the 1/✏ poles appearing in loop integrals which
come in powers of

ln
µ2

⇤2
+

1

✏
+ c , (8)

where c is the finite part of the integral. Since anything
can be hidden into infinity, one can subtract any finite
part as well with the pole. This is equivalent to redefin-
ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
di↵ers from the MS-scheme by an additional absorption
of the term ln(4⇡)� �E , which corresponds to redefining
µ to:

µ2 = µ2
MS

exp(ln 4⇡ � �E) . (9)

We will generalize this by defining the
�-Renormalization scheme, R�, where one absorbs
ln(4⇡)� �E � �, i.e.

µ2 = µ2
� exp(ln 4⇡ � �E � �) , (10)

where � is an arbitrary finite number, and by appropriate
choice will connect all MS-type schemes. In particular1:

R0 = MS , (11)

Rln 4⇡��E = MS . (12)

The scheme-transformation between di↵erent R� cor-
responds simply to a displacement in their corresponding
scales, i.e.

µ2
�2 = µ2

�1 exp(�2 � �1) . (13)

In particular:

µ2
� = µ2

MS
exp(�) . (14)

1
Note that we have chosen MS as the reference scheme for R0.

This is done since most results today are known in this scheme;

however there is nothing special about MS, and R0 can be rede-

fined to be any other MS-scheme

A finite subtraction from infinity is arbitrary. Let’s make use of this!

This corresponds to a shift in the scale: 

µ2
MS

= µ2
exp(ln 4⇡ � �E)

µ2
� = µ2

MS
exp(��) = µ2

exp(ln 4⇡ � �E � �)

Subtract an arbitrary constant and keep it in your calculation:      -scheme

2

subtracted in addition to the standard subtraction
ln 4⇡ � �E of the MS-scheme. The �-subtraction defines
an infinite set of renormalization schemes which we call
�-Renormalization (R�) schemes; since physical results
cannot depend on the choice of scheme, predictions must
be independent of �. The R�-scheme exposes the gen-
eral pattern of nonconformal {�i}-terms, and it reveals a
special degeneracy of the terms in the perturbative coef-
ficients which allows us to resum the perturbative series.
The resummed series matches the conformal series, which
is itself free of any scheme and scale ambiguities as well
as being free of a divergent renormalon series. It is the
final expression one should use for physical predictions.
It also makes it possible to setup an algorithm for au-
tomatically computing the conformal series and setting
the e↵ective scales for the coupling at each perturbative
order.

II. THE �-RENORMALIZATION SCHEME

In dimensional regularization logarithmically divergent
integrals are regularized by computing them in d = 4�2✏
dimensions [25–28]. This requires the following transfor-
mation of the integration measure and introduction of an
arbitrary mass scale µ:

Z

d4p ! µ2✏

Z

d4�2✏p . (1)

Divergences are then separated as 1/✏ poles and can be
absorbed into redefinitions of the couplings. The choice
of subtraction procedure is known as the renormalization

scheme and is chosen at the theorist’s convenience. To
avoid dealing with coupling constants changing dimen-
sionality as a function of ✏ one rescales the the couplings
as well with the mass scale µ in the d = 4� 2✏ theory. In
particular, for QCD one rewrites the bare gauge coupling
a0 = ↵0/4⇡ = g2/(4⇡)2 as:

a0 = µ2✏ZaSaS , (2)

where aS is the renormalized gauge coupling under a spe-
cific renormalization scheme S and ZaS is the renormal-
ization constant of the coupling. The mass scale µ is
now understood as the renormalization scale. The bare
coupling must be independent of the arbitrary scale µ,
thus

µ2 da0
dµ2

= 0. (3)

Using this and the expansions

µ2 daS
dµ2

= �✏aS + �(aS) , (4)

�(a) = �a2
1
X

i=0

�ia
i , (5)

Za = 1 +
1
X

i=1
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i , (6)

it is easily derived that:
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and the �i coe�cients are known up to �3, or four loops
[29]. The coe�cients �i are renormalization-scheme de-
pendent; however, it is easy to demonstrate by a general
scheme-transformation that the first two coe�cients �0

and �1 are universal for all mass-independent renormal-
ization schemes.
In the minimal subtraction (MS) scheme [30] one ab-

sorbs the 1/✏ poles appearing in loop integrals which
come in powers of

ln
µ2

⇤2
+

1

✏
+ c , (8)

where c is the finite part of the integral. Since anything
can be hidden into infinity, one can subtract any finite
part as well with the pole. This is equivalent to redefin-
ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
di↵ers from the MS-scheme by an additional absorption
of the term ln(4⇡)� �E , which corresponds to redefining
µ to:

µ2 = µ2
MS

exp(ln 4⇡ � �E) . (9)

We will generalize this by defining the
�-Renormalization scheme, R�, where one absorbs
ln(4⇡)� �E � �, i.e.

µ2 = µ2
� exp(ln 4⇡ � �E � �) , (10)

where � is an arbitrary finite number, and by appropriate
choice will connect all MS-type schemes. In particular1:

R0 = MS , (11)

Rln 4⇡��E = MS . (12)

The scheme-transformation between di↵erent R� cor-
responds simply to a displacement in their corresponding
scales, i.e.

µ2
�2 = µ2

�1 exp(�2 � �1) . (13)

In particular:

µ2
� = µ2

MS
exp(�) . (14)

1
Note that we have chosen MS as the reference scheme for R0.

This is done since most results today are known in this scheme;

however there is nothing special about MS, and R0 can be rede-

fined to be any other MS-scheme

R�

�-Renormalization Scheme ( R� scheme)
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X-GW: My new comments and corrections are shown like this.
MM: I have made the suggested changes that did not need discussion, but left those that we must

discuss. I have corrected typos and made further discussion.

PACS numbers:

I. GENERALIZED RENORMALIZATION
SCHEME IN DIMENSIONAL REGULARIZATION

In dimensional regularization logarithmically divergent
integrals are regularized by computing them in d = 4�2✏
dimensions by which the divergences are separated as 1/✏
poles and can be absorbed into redefinitions of the cou-
plings. The choice of subtraction procedure is known as
the renormalization scheme and is chosen by the theo-
rists convenience. To avoid dealing with couplings chang-
ing dimensionality as a function of ✏ one introduces an
arbitrary mass scale µ to keep coupling constants dimen-
sionless in the 4� 2✏ theory. In particular, for QCD one
rewrites the bare gauge coupling a

0

= ↵
0

/4⇡ = g2/(4⇡)2

as:

a
0

= µ2✏ZaSaS , (1)

where aS is the renormalized gauge coupling under a spe-
cific renormalization scheme S and ZaS is the renormal-
ization constant of the coupling. The bare coupling must
be independent of the arbitrary scale µ, thus

µ2

da
0

dµ2

= 0. (2)

Using this and the expansions

µ2

daS
dµ2

= �✏aS + �(aS) , (3)

�(a) = �a2
1X

i=0

�ia
i , (4)

Za = 1 +
1X

i=1

zia
i , (5)
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it is easily derived that:
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and the �i coe�cients are known up to �
3

, or four loops
[1]. The coe�cients �i are renormalization scheme de-
pendent, however, it is well-known that the two first co-
e�cients �

0

and �
1

are unique.
The arbitrariness of µ allows one to absorb the infini-

ties into a redefinition of the renormalized coupling. In
the minimal subtraction (MS) scheme one absorbs the 1

✏
poles appearing in loop integrals. However, since any-
thing can be hidden into infinity, one can subtract any
finite part as well with the pole. The MS-scheme di↵ers
from the MS-scheme by an additional absorption of the
term ln(4⇡)� �E . We will generalize this by introducing
the the �-Renormalization scheme, R�, where one ab-
sorbs ln(4⇡)� �E � � into the coupling constant. Here �
is an arbitrary finite number, and by appropriate choice
connects all MS-type schemes. In particular1:

R
0

= MS , (7)

R
ln 4⇡��E = MS . (8)

The scheme-transformation between di↵erent R� cor-
responds simply to a displacement in their corresponding
scales,

1
Note that we have chosen MS as the reference scheme for R0.

This is done since most results today are known in this scheme,

however, there is nothing special about MS and R0 can be rede-

fined to be any other MS-scheme

Call this the R� renormalization scheme

2

X-GW: As I have discussed before, this conclusion must
be demonstrated, which can be derived by applying the LO
BLM/PMC procedure. A simple demonstration by using the
e↵ective coupling has been done by Stan and Hungjung al-
ready.

MM: As I have also discussed, this is not LO and it has
nothing to do with commensurate scale relations! It is a re-
definition of the µ scale in Eq.(1) and is per definition exact.
Please also see my previous comments that I have provide a
couple of times now and also do recall how the MS and MS

schemes are defined.
i.e.

µ�2 = µ�1e
�1��2

2 . (9)

In particular:

µ
MS

= µ
MS

e(ln 4⇡��E)/2, (10)

µ� = µ
MS

e��/2 . (11)

Since all R�’s are connected by scale-displacements,
the �-functions of aR� defined in Eq. (3) are the same in
any R�. The index � on aR� is thus redundant and we
denote it instead as aR. In this work we are only con-
cerned with R� and will therefore simply denote aR ⌘ a,
unless it appears in an ambiguous context.

We can find a power series solution in 1/ ln(µ/⇤) for
a by solving the renormalization group equation per-
turbatively. It is simplest to use the extended renor-
malization group prescription where one works with the
rescaled coupling â = �1

�0
a and rescaled logarithm L� =

�2
0

�1
ln(µ�/⇤). The solution up to O(1/L5

�) reads:

â(µ�) =
1
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+

1
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�

(C � lnL�) +
1
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�
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◆
, (12)

where C is an arbitrary integration constant which in R�

is set to C = ln�2

0

/�
1

to reproduce the standard ⇤
MS

scale. Note that we take the asymptotic scale ⇤ = ⇤
MS

to be the same for any R�. Alternatively, one can take
the scale µ to be the same for any R�, while instead
having di↵erent asymptotic scales ⇤�.

II. OBSERVABLES IN R�

Consider an observable computed using perturbation
theory and in a scheme which we put as the references
scheme R

0

(this will be the MS for most computed quan-
tities) with the following expansion:

⇢
0

(Q2) =
1X

i=0

ri(Q
2/µ2

0

)a(µ
0

)i , (13)

where µ
0

stands for some initial renormalization scale
and Q is the scale at which the observable is measured.
The most general expansion with an extra factor an in
front of the sum for any n (i.e. the tree level ↵s powers)
can readily be derived and does not change the following
conclusions.

Since results in any R� are related by scale displace-
ments, we can derive the general expression for ⇢ in R�

by using the displacement relation:

a(µ
0

) = a(µ�) +
1X

n=0

1

n!

dna(µ)

(d lnµ2)n
|µ=µ� �n , (14)

where we used that � = lnµ2

0

/µ2

� . The expression for ⇢ is
straightforwardly computed to any order, and in partic-
ular to order a4 it reads:
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where ri are generally functions of lnQ2/µ2

� and �, since
lnQ2/µ2

0

= lnQ2/µ2

� � �.
Since ⇢ is a physical observable, it must be independent

of the arbitrary renormalization scheme and scale. That
is,

@⇢�
@µ�

= 0 ,
@⇢�
@�

= 0 , (16)

for any �. However, the argument does no longer hold
when the infinite perturbative series has been truncated
to any finite order. This is known as the renormalization

scale ambiguity and the renormalon problem of pertur-
bative QCD. Note that the ambiguity resides in choosing

Teach a robot to compute the PMC scales

All R� renormalization schemes have same �-function

M. Mojaza, Xing-Gang Wu, sjb
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Exposing the Renormalization Scheme Dependence
Observable in the      -scheme:

⇢�(Q
2) =r0 + r1a(µ) + [r2 + �0r1�]a(µ)

2 + [r3 + �1r1� + 2�0r2� + �2
0r1�

2]a(µ)3 + · · ·

R0 = MS , Rln 4⇡��E = MS µ2
= µ2

MS
exp(ln 4⇡ � �E) , µ2

�2 = µ2
�1 exp(�2 � �1)

Note the divergent ‘renormalon series’ n!�n↵n
s

⇢�(Q
2) =r0 + r1a1(µ1) + (r2 + �0r1�1)a2(µ2)

2 + [r3 + �1r1�1 + 2�0r2�2 + �2
0r1�

2
1 ]a3(µ3)

3

The �pka
n
-term indicates the term associated to a diagram with 1/✏n�k

di-

vergence for any p. Grouping the di↵erent �k-terms, one recovers in the Nc ! 0

Abelian limit the dressed skeleton expansion.

R�

Exercise: 
Use the scale displacement relation to derive these expressions

Renormalization Scheme Equation
d⇢

d�
= ��(a)

d⇢

da
!
= 0 �! PMC

M. Mojaza, Xing-Gang Wu, sjb
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Special Degeneracy in PQCD

There is nothing special about a particular value for � , thus for any �

⇢(Q2) =r0,0 + r1,0a(Q) + [r2,0 + �0r2,1]a(Q)2 + [r3,0 + �1r2,1 + 2�0r3,1 + �2
0r3,2]a(Q)3

+ [r4,0 + �2r2,1 + 2�1r3,1 +
5

2
�1�0r3,2 + 3�0r4,1 + 3�2

0r4,2 + �3
0r4,3]a(Q)4

According to the principal of maximum conformality we must set the scales 
such to absorb all ‘renormalon-terms’, i.e. non-conformal terms

⇢(Q2) = r0,0 + r1,0a(Q) + (�0a(Q)2 + �1a(Q)3 + �2a(Q)4 + · · · )r2,1

+ (�2
0a(Q)3 +

5

2
�1�0a(Q)4 + · · · )r3,2 + (�3

0 + · · · )r4,3

+ r2,0a(Q)2 + 2a(Q)(�0a(Q)2 + �1a(Q)3 + · · · )r3,1
+ · · ·

r2,0a(Q2)
2 = r2,0a(Q)2 � 2a(Q)�(a)r3,1 + · · ·

r1,0a(Q1) = r1,0a(Q)� �(a)r2,1 +
1

2
�(a)

@�

@a
r3,2 + · · ·+ (�1)n

n!

dn�1�

(d lnµ2)n�1
rn+1,n

General pattern of pQCD
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Darwin's Dinobird Fossil Analyzed at SLAC National Accelerator
Laboratory

Menlo Park, Calif. - A keystone of evolutionary history, the Thermopolis
Archaeopteryx fossil, has come to the U.S. Department of Energy's SLAC
National Accelerator Laboratory to undergo a revolutionary type of analysis.
Using intense X-ray beams, scientists will search for characteristics of the
"dinobird" that have eluded all previous scientific analyses...

» read more

October 16, 2008

First Gamma-ray-only Pulsar Observation Opens New Window on
Stellar Evolution

Menlo Park, Calif. - About three times a second, a 10,000-year-old stellar
corpse sweeps a beam of gamma-rays toward Earth. This object, known as a
pulsar, is the first one known to "blink" only in gamma rays, and was
discovered by the Large Area Telescope (LAT) onboard NASA's Fermi Gamma-
ray Space Telescope, a collaboration with the U.S. Department of Energy
(DOE) and international partners...
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The U.S. Department of Energy (DOE) and NASA announced today that the
Gamma-Ray Large Area Space Telescope (GLAST) has revealed its first all-sky
map in gamma rays. The onboard Large Area Telescope's (LAT) all-sky
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Physicists Discover New Particle: The Bottom-most
"Bottomonium"

Thirty years ago, particle physics delighted in discovering the "bottomonium"
family—the set of particles that contain both a bottom quark and an anti-
bottom quark but are bound together with different energies. Ever since,
researchers have sought...
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2

X-GW: As I have discussed before, this conclusion must
be demonstrated, which can be derived by applying the LO
BLM/PMC procedure. A simple demonstration by using the
e↵ective coupling has been done by Stan and Hungjung al-
ready.

MM: As I have also discussed, this is not LO and it has
nothing to do with commensurate scale relations! It is a re-
definition of the µ scale in Eq.(1) and is per definition exact.
Please also see my previous comments that I have provide a
couple of times now and also do recall how the MS and MS

schemes are defined.
i.e.

µ�2 = µ�1e
�1��2

2 . (9)

In particular:

µ
MS

= µ
MS

e(ln 4⇡��E)/2, (10)

µ� = µ
MS

e��/2 . (11)

Since all R�’s are connected by scale-displacements,
the �-functions of aR� defined in Eq. (3) are the same in
any R�. The index � on aR� is thus redundant and we
denote it instead as aR. In this work we are only con-
cerned with R� and will therefore simply denote aR ⌘ a,
unless it appears in an ambiguous context.

We can find a power series solution in 1/ ln(µ/⇤) for
a by solving the renormalization group equation per-
turbatively. It is simplest to use the extended renor-
malization group prescription where one works with the
rescaled coupling â = �1

�0
a and rescaled logarithm L� =

�2
0

�1
ln(µ�/⇤). The solution up to O(1/L5

�) reads:

â(µ�) =
1

L�
+

1

L2

�

(C � lnL�) +
1

L3

�

⇥C2 + C + c
2

� (2C � lnL� + 1) lnL� � 1
⇤
+

1

L4

�

⇢
C
✓
C2 +

5

2
C + 3c

2

� 2

◆

�1� c
3

2
�


3C2 + 5C + 3c

2

� 2�
✓
3C � lnL� +

5

2

◆
lnL�

�
lnL�

�
+O

✓
1

L5

�

◆
, (12)

where C is an arbitrary integration constant which in R�

is set to C = ln�2

0

/�
1

to reproduce the standard ⇤
MS

scale. Note that we take the asymptotic scale ⇤ = ⇤
MS

to be the same for any R�. Alternatively, one can take
the scale µ to be the same for any R�, while instead
having di↵erent asymptotic scales ⇤�.

II. OBSERVABLES IN R�

Consider an observable computed using perturbation
theory and in a scheme which we put as the references
scheme R

0

(this will be the MS for most computed quan-
tities) with the following expansion:

⇢
0

(Q2) =
1X

i=0

ri(Q
2/µ2

0

)a(µ
0

)i , (13)

where µ
0

stands for some initial renormalization scale
and Q is the scale at which the observable is measured.
The most general expansion with an extra factor an in
front of the sum for any n (i.e. the tree level ↵s powers)
can readily be derived and does not change the following
conclusions.

Since results in any R� are related by scale displace-
ments, we can derive the general expression for ⇢ in R�

by using the displacement relation:

a(µ
0

) = a(µ�) +
1X

n=0

1

n!

dna(µ)

(d lnµ2)n
|µ=µ� �n , (14)

where we used that � = lnµ2

0

/µ2

� . The expression for ⇢ is
straightforwardly computed to any order, and in partic-
ular to order a4 it reads:

⇢�(Q
2) =r

0

+ r
1

a(µ�) + [r
2

� �
0

r
1

�]a(µ�)
2

+ [r
3

+ �2

0

�2r
1

� � (2�
0

r
2

+ �
1

r
1

)]a(µ�)
3

+ [r
4

� � (3�
0

r
3

+ 2�
1

r
2

+ �
2

r
1

)� �3

0

�3r
1

+ �2(3�2

0

r
2

+
5

2
�
1

�
0

r
1

)]a(µ�)
4 +O(a5) , (15)

where ri are generally functions of lnQ2/µ2

� and �, since
lnQ2/µ2

0

= lnQ2/µ2

� � �.
Since ⇢ is a physical observable, it must be independent

of the arbitrary renormalization scheme and scale. That
is,

@⇢�
@µ�

= 0 ,
@⇢�
@�

= 0 , (16)

for any �. However, the argument does no longer hold
when the infinite perturbative series has been truncated
to any finite order. This is known as the renormalization

scale ambiguity and the renormalon problem of pertur-
bative QCD. Note that the ambiguity resides in choosing

3

a value for the arbitrary initial scale µ�, or correspond-
ingly fixing the arbitrary scheme, R�. The � dependency
of the coe�cients is not small and since this is an implicit
µ� dependency it is simply wrong to state that the coef-
ficients only depend logarithmically on the scale. This is
intimately connected to the renormalon problem.

X-GW: Here, I have cut o↵ unimportant discussions.

MM: Ok.

Now, it is obvious that in a conformal theory, where
{�i} = {0}, the � dependency vanishes in Eq.(15). That
is, the result is the same in anyR�. Therefore, by absorb-
ing all {�i} dependency into a redefinition of the scales
at each order, we obtain a final result independent of the
initial choice of scale and scheme. Using R� we can make
this statement even more rigorous. From the explicit ex-
pression in Eq. (15) it is easy to confirm that

d⇢�(s)

d�
= �(a)

d⇢�
da

. (17)

We see that to obtain a scheme-invariant and confor-
mal result, we must set the scales such that all {�i}-
functions equal to zero, which further leads to

�(a) = 0 . (18)

Notice that this holds at any order in perturbation the-
ory and is a theoretical requirement, di↵erent from the
physical fact that the all-orders expression for ⇢ must be
renormalization scale and scheme invariant. It should be
emphasized that this is not a fixed point expression for
a but is a fully conformal requirement, that is, the beta
function vanishes identically. This proves the principle

of maximal conformality (PMC) at any order.
X-GW: I think the above demonstration is not complete

or misleading. It is right that if the right side of Eq.(17) is
satisfied by a proper PMC procedure, then the left side can be
satisfied naturally.

MM: This is all I had in mind, in other words Eq.(18) is
the ’proof-of-concept’ of the PMC scale setting - as you say, it
demonstrates that if one sets the scale such that all {�i} are
absorbed, the final result is renormalization scheme invariant
and this is the principal of maximal conformality.

X-GW: However if the left side of Eq.(18) is satisfied we
can only obtain �(a) = 0, but we can not obtain the conclusion
that all the terms involving {�i}-functions are equal to zero,
that is we can not eliminate all {�i}-series. It only happens
when all {�i}-terms are combined into functions of �(a) that
is only a lottery.

MM: There are two ways of obtaining �(a) = 0: either
{�i} = 0 or a(µ) = a⇤, where a⇤ is a constant - the fixed point
value, �(a⇤

) = 0. As I emphasize above, the latter is not what
we are considering. Let me elaborate. The fixed point theory
is a conformal field theory (CFT) - the coupling does not run.
In a CFT it does not make sense to set the scale, since the
theory is scale-invariant (a = a⇤ on all scales). Moreover, the
CFT is not asymptotically free, so we cannot even consider
observables computed in perturbation theory - it has no well-
defined perturbative limit. So, to me it does not make sense
to consider nor discuss this case in the context of the scale

setting problem. Therefore, �(a) = 0 can only mean {�i} = 0

in the context we are considering.
In fact, by setting � = 0 directly, we must demonstrate the

{�i}-terms in the coe�cient functions ri are eliminated simul-
taneously. This point has also been discussed in my previous
letters, but it has not been discussed so far.

MM: I do not understand this last comment?

III. SETTING THE PMC SCALES

The expression in Eq. (15) explicitly shows the pattern
of �i terms appearing in the coe�cients at each order.
That is, if we forget about any reference scheme, the
expression for ⇢ in any scheme will take the form:

⇢(Q2) =r
0,0 + r

1,0a(Q) + [r
2,0 + �

0

r
2,1]a(Q)2

+ [r
3,0 + �

1

r
2,1 + 2�

0

r
3,1 + �2

0

r
3,2]a(Q)3

+ [r
4,0 + �

2

r
2,1 + 2�

1

r
3,1 +

5

2
�
1

�
0

r
3,2 + 3�

0

r
4,1

+ 3�2

0

r
4,2 + �3

0

r
4,3]a(Q)4 +O(a5) (19)

where ri,0 are the conformal part of the coe�cients.
MM: Note that I in this expression have assumed/inferred

some relations between the coe�cients e.g. the �0a(Q)

2 co-
e�cient and the �1a(Q)

3 are equal etc... It follows from Eq.
(15) and I have checked that it is indeed correct for Re+e�!h.
I think this holds for any observable?
We have as before for simplicity of the expression set

µ = Q, but this is not the final expression. We must
set the scale at each order in such a way to absorb all �i

dependencies into the running coupling. The problem is
now to understand which terms should be absorbed into
which scales. We can use R� to provide the solution. In
deriving Eq. (15) we made an equal scale displacement
of each running coupling. To see from where each � ap-
peared, we put a dummy index on the displacement of
each coupling to track its origin. The result is:

⇢�(Q
2) =r

0

+ r
1

a
1

(Q) + (r
2

� �
0

r
1

�
1

)a
2

(Q)2

+ [r
3

� �
1

r
1

�
1

� 2�
0

r
2

�
2

+ �2

0

r
1

�2
1

]a
3

(Q)3

+ [r
4

� �
2

r
1

�
1

� 2�
1

r
2

�
2

� 3�
0

r
3

�
3

+ 3�2

0

r
2

�2
2

� �3

0

r
1

�3
1

+
5

2
�
1

�
0

r
1

�2
1

]a(Q)4 +O(a5) (20)

This immediately shows us which terms should be ab-
sorbed into which running coupling, e.g. we must resum
all �

1

dependency into a
1

etc.. In the end one can remove
the dummy index on the couplings since they were put
only to display the correct resummation pattern.

MM: I must emphasize here that the BLM procedure is
only and approximation to PMC as can be seen above, i.e.
besides the fact that ri,0 depend explicitly on Nf one can also
now observe that e.g. there is an N2

f term coming from �1�0

at order a4 which must be absorbed into a1 - If I have un-
derstood BLM correctly, at this order you absorb only all N3

f

dependency into a1, right?

Shows the general way that nonconformal terms  
enter an observable

Generalization: use �n at n-loops.

initial
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Darwin's Dinobird Fossil Analyzed at SLAC National Accelerator
Laboratory

Menlo Park, Calif. - A keystone of evolutionary history, the Thermopolis
Archaeopteryx fossil, has come to the U.S. Department of Energy's SLAC
National Accelerator Laboratory to undergo a revolutionary type of analysis.
Using intense X-ray beams, scientists will search for characteristics of the
"dinobird" that have eluded all previous scientific analyses...

» read more

October 16, 2008

First Gamma-ray-only Pulsar Observation Opens New Window on
Stellar Evolution

Menlo Park, Calif. - About three times a second, a 10,000-year-old stellar
corpse sweeps a beam of gamma-rays toward Earth. This object, known as a
pulsar, is the first one known to "blink" only in gamma rays, and was
discovered by the Large Area Telescope (LAT) onboard NASA's Fermi Gamma-
ray Space Telescope, a collaboration with the U.S. Department of Energy
(DOE) and international partners...

» read more

October 15, 2008

Stanford Linear Accelerator Center Renamed SLAC National
Accelerator Laboratory

Menlo Park, Calif.—The U.S. Department of Energy (DOE) has renamed
Stanford Linear Accelerator Center the SLAC National Accelerator Laboratory.
What's in a name? Great past, great future, great science...

» read more

August 26, 2008

GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-
Ray Sky

The U.S. Department of Energy (DOE) and NASA announced today that the
Gamma-Ray Large Area Space Telescope (GLAST) has revealed its first all-sky
map in gamma rays. The onboard Large Area Telescope's (LAT) all-sky
image...

» read more

July 9, 2008

Physicists Discover New Particle: The Bottom-most
"Bottomonium"

Thirty years ago, particle physics delighted in discovering the "bottomonium"
family—the set of particles that contain both a bottom quark and an anti-
bottom quark but are bound together with different energies. Ever since,
researchers have sought...
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Renormalization Group Equation

Higher loop (scheme dependent): 

Integrate perturbatively and solve for a as an expansion in 

ln
µ2

µ2
0

=

Z a(µ)

a(µ0)

da

�(a)
General Solution:

(lnµ2/⇤2)�1 ⌧ 1

Relating different renormalization scales:

Taylor expanding a(µ) around ln(µ0): 

a(µ) = a(µ0)� �0a(µ0)
2 ln

µ2

µ2
0

�

�1 � �2

0 ln
µ2

µ2
0

�
a(µ0)

3 ln
µ2

µ2
0

+ · · ·

Exercise: Derive this scale displacement relation (Use RGE).

daS
d lnµ2

= �S(a) = �a2[�0 + �1a+ �S
2 a

2 + �S
3 a

3 + · · · ]
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General pattern of 
pQCD



Shift scale of αs to µPMC
R to eliminate {βR

i }− terms

Conformal Series

Choose renormalization scheme; e.g. αR
s (µ

init
R )

Choose µinit
R ; arbitrary initial renormalization scale

Identify {βR
i }− terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit
R and scheme at fixed order

Xing-Gang Wu, Matin Mojaza !
Leonardo  di Giustino, SJB

No renormalization scale ambiguity! 
!

Result is independent of  
Renormalization scheme  

and initial scale! 
!

QED Scale Setting at NC=0 
!
!

Eliminates unnecessary  
systematic uncertainty

PMC/BLM

Set multiple renormalization scales -- 	
Lensing, DGLAP, ERBL Evolution ...

δ-Scheme automatically             
identifies β-terms!

Scale fixed at each order

Principle of Maximum Conformality

δ

order by order

24

A robot can compute the PMC scales
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33/41

Application C: Scale setting for R(Q) at NNLO

C is for singlet contribution and is small

As usual, we set C=0

application X-G Wu, sjb

BLM/PMC Scale-Setting for  R(Q)
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R̄e+e�(s) =�0 + �1a(µ) + [�2 + �0⇧1]a(µ)
2 + [�3 + �1⇧1 + 2�0⇧2 � �2

0
⇡2�1
3

]a(µ)3

+ [�4 + �2⇧1 + 2�1⇧2 + �0⇧3 �
5

2
�0�1

⇡2�1
3

� 3�2
0
⇡2�2
3

� �3
0⇡

2⇧1]a(µ)
4

Scale Example:

4

4. The final pQCD expression for the observable reads
⇢final(Q) =

P

k=0 rk,0a(Qk)k.

As a final remark, we note that the PMC can be used to
set separate scales for di↵erent skeleton diagrams; this is
particularly important for multi-scale processes. In gen-
eral the {�i}-coe�cients multiply terms involving log-
arithms in each of the invariants [3]. For instance, in
the case of qq̄ ! QQ̄ near the heavy quark threshold in
pQCD, the PMC assigns di↵erent scales to the annihi-
lation process and the rescattering corrections involving
the heavy quarks’ relative velocity [9].
Example: e+e� ! hadrons. The ratio for electron-
positron annihilation into hadrons, Re+e�!h, was re-
cently computed to order a4 [10] and can be shown to
exactly match the generic form of Eq.(6). It can be de-
rived by analytically continuing the Adler function, D,
into the time-like region, with D given by:

D(Q2) = �(a) � �(a)
d

da
⇧(Q2, a) , (13)

where � is the anomalous dimension of the vector field,
⇧ is the vacuum polarization function and they are given
by the perturbative expansions: �(a) =

P1
n=0 �na

n and
⇧(a) =

P1
n=0 ⇧nan. It is easy to show that to order a4

the perturbative expression for Re+e�!h in terms of �n
and ⇧n reads:

Re+e�!h(Q) = �0 + �1a(Q) + [�2 + �0⇧1]a(Q)2 (14)

+ [�3 + �1⇧1 + 2�0⇧2 � �2
0

⇡2�1
3

]a(Q)3

+ [�4 + �2⇧1 + 2�1⇧2 + 3�0⇧3

� 5

2
�0�1

⇡2�1
3

� 3�2
0

⇡2�2
3

� �3
0⇡

2⇧1]a(Q)4 .

This expression has exactly the form of Eq.(6) with the

identification: ri,0 = �i, ri,1 = ⇧i�1, ri,2 = �⇡2

3 �i�2 and
ri,3 = �⇡2⇧i�3. The �i contain Nf -terms, but since they
are independent of � to any order, they are kept fixed in
the scale-setting procedure. Note that we have knowledge
of even higher order ri,j coe�cients, and this allows us
to set the e↵ective scales Q1, Q2 and Q3 to the NNNLO,
given by Eq.(10). It is worth noting that the Adler func-
tion D itself has a much simpler {�i}-structure. By con-
vention the argument of a is space-like; thus the ⇡2-terms
appearing in Re+e�!h could be avoided by using a cou-
pling constant with time-like argument, leading to a more
convergent series [11].

The last unknown scale in Eq. (14) can be estimated.
It turns out that Q4 ⇠ Q which is the value we have used
[2]. The expressions for the coe�cients �i and ⇧i can be
found in Ref. [10], and the four-loops �-function is given
in Ref. [12]. The final result in numerical form in terms
of ↵ = ↵s/⇡ for QCD with five active flavors reads:

3

11
Re+e�!h(Q) =1 + ↵(Q1) + 1.84↵(Q2)

2

� 1.00↵(Q3)
3 � 11.31↵(Q4)

4 . (15)

This is a more convergent result compared to previous
estimates, and it is free of any scheme and scale ambigu-
ities (up to strongly suppressed residual ones).

To find numerical values for the e↵ective scales, the
asymptotic scale, ⇤, of the running coupling must
first be determined by matching Eq.(15) with exper-

imental results [13]: 3
11R

e+e�!h
exp (

p
s = 31.6 GeV) =

1.0527 ± 0.0050 . Using a logarithmic expansion solu-
tion of the renormalization group equation for a we find:
⇤MS = 419+222

�168 MeV. We have used the MS definition
for the asymptotic scale, and the asymptotic scale of R�

can be taken to be the same for any �. The e↵ective scales
are found to be: Q1 = 1.3 Q ,Q2 = 1.2 Q, Q3 ⇡ 5.3 Q.
The values are independent of the initial renormalization
scale up to some residual dependence coming from the
truncated �-function, which is less than the quoted ac-
curacy on the numbers. This is illustrated in Fig. 1. For
Q3 we have taken the LO value, which is su�cient to
get the conformal series at four loops. Its higher order
value has artificial strong residual renormalization-scale
dependence due to the large numerical value of ⇧3 in
QCD with five active flavors. These final scales deter-
mine the e↵ective number of quarks flavors at each order
of perturbation theory [14].

For completeness, we use our final result to predict the
strong coupling constant at the Z-boson mass-scale in five
flavor massless QCD:

↵s(MZ) = 0.132+0.010
�0.011 . (16)

The error on this result is a reflection of the experimental
uncertainty on Re+e�!h

exp , which cannot be eliminated.
We can apply our result to Abelian QED, where

Re+e�!h can be seen as the imaginary part of the QED
four loop 1PI vacuum polarization diagram by the opti-
cal theorem, and find in this case nearly complete renor-
malization scale independence of all three scales to the
NNNLO due to the small value of the coupling constant.
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R
e+ e-Æ hH31.6 GeVL3

11

FIG. 1: The final result for Re+e�!h as a function of
the initial renormalization scale (solid line),
demonstrating the initial scale-invariance of the final
prediction, up to strongly suppressed residual dependence.
The shaded region is the experimental bounds with the
central value given by the dashed line.

8

Using these relations automatically gives the e↵ective
scales in Eq. (35c).

The automation process can be outlined as follows:

1. Choose any �-Renormalization scheme and scale.

2. Compute the physical observable in pQCD and ex-
tract the Nf coe�cients, ck,j .

3. Find the �i coe�cients, rk,j from the ck,j coe�-
cients and compute the PMC scales, Qk.

4. The final pQCD expression for the observable
reads

⇢final(Q) =
X

k=0

rk+1,0a(Qk+1)
n+k . (40)

This procedure demonstrates that the Nf terms can be
unambiguously associated to the {�i}-terms to all orders.
It also shows that PMC is the underlying principle of
BLM scale setting.

IV. EXAMPLES

We now consider three examples based on the Adler
function [39], D, which can be measured indirectly
through the dispersion relation:

D(Q2) = Q2

Z 1

4m2
⇡

Re+e�(s)

(s+Q2)2
ds, (41)

where Re+e� is the ratio for electron-positron annihila-
tion into hadrons.

The Adler function is particularly instructive to con-
sider, since its conformal and non-conformal parts can
be separated by using RG arguments. Explicitly, the
Adler function can be written in terms of the vector field
anomalous dimension, �, and the vacuum polarization
function, ⇧, as follows [40, 47]

D̄(Q2) = �1D(Q2) = �(a)� �(a)
d

da
⇧(Q2, a) . (42)

where �(a) is the �-function of the running coupling and
we have defined the normalized Adler function D̄ where
 = dF

P

f Q
2
f and dF is the dimension of the quark

color representation, which in QCD reads dF = Nc. We
will work with this normalization throughout the related
examples. In perturbation theory we define

�(a) = 
1
X

n=0

�na(Q)n , (43)

⇧(a) = 
1
X

n=0

⇧na(Q)n , (44)

which are now known to four-loop order [41–50].
The PMC procedure then follows by absorbing all �-
dependent terms, which following Sec. III A becomes a
trivial exercise once the degenerate coe�cients ri,j have
been identified.
As a fourth example, we consider a case where the ex-

plicit conformal and non-conformal parts are not known.
Here we make explicit use of the automation procedure to
derive the special degeneracy as described in Sec. III B.

A. e+e� ! hadrons

The ratio for electron-positron annihilation into
hadrons, Re+e� can inversely to Eq. (41) be computed
from the Adler function, D, as follows:

R̄e+e�(s) =
1

2⇡i

Z �s+i✏

�s�i✏

D̄(Q2)

Q2
dQ2 . (45)

It is easy to show that to order a4 the perturbative ex-
pression for R̄e+e� in terms of �n and ⇧n reads:

R̄e+e�(Q) =�0 + �1a(Q) + [�2 � �0⇧1]a(Q)2 (46)

+ [�3 + �1⇧1 + 2�0⇧2 � �2
0

⇡2�1
3

]a(Q)3

+ [�4 + �2⇧1 + 2�1⇧2 + �0⇧3

� 5

2
�0�1

⇡2�1
3

� 3�2
0

⇡2�2
3

� �3
0⇡

2⇧1]a(Q)4

As expected, this expression has exactly the form of
Eq.(20), with the following identification of the coe�-
cients ri,j :

ri,0 = �i (47a)

ri,1 = ⇧i�1 , i � 2 (47b)

ri,2 = �⇡2

3
�i�2 , i � 3 (47c)

ri,3 = �⇡2⇧i�3 , i � 4 (47d)

The expressions for the coe�cients �i and ⇧i can be
found in Ref. [47, 50], and the four-loops �-function is
given in Ref. [29]. The �i contain Nf -terms, but since
they are independent of � to any order, they are kept
fixed in the scale-setting procedure. Notice that this is a
feature in dimensional regularization.
Now it is easy to set the exact PMC scales from

Eq.(35c) using that Rk,j = (�1)jrk+j,j/�k ,

ln
Q2

3

Q2
= �⇧3

�3
, (48)

ln
Q2

2

Q2
= �

⇧2 +
1
2

h

@�
@a + �

a

i

⇡2

3 �2

�2 � 1
2

h

@�
@a + �

a

i

⇧2

, (49)

and

D̄(Q2) = �(a)� �(a)
d

da
⇧(Q2, a)

Initial expression

Final expression 

R̄e+e�(Q) =�0 + �1a(Q1) + �2a(Q2)
2

+ �3a(Q3)
3 + �4a(Q4)

4

Final PMC Scales
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The Renormalization Scale Ambiguity for "
Top-Pair Production Asymmetry at the Tevatron is Eliminated Using the 

‘Principle of Maximum Conformality’ (PMC)
Xing-Gang Wu 

S.-Q. Wang 
Z.-G. Shi 
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Experimental  
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PMC Prediction

Top quark forward-backward asymmetry predicted by pQCD NNLO 

within 1 σ of CDF/D0 measurements using PMC/BLM scale setting 
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Small value of  renormalization scale  increases 
asymmetry, just as in QED

g

Xing-Gang Wu, sjb

Interferes with Born term. 
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Implications for the p̄p! t¯tX asymmetry at the Tevatron
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Figure 11. Predictions for the mtt̄ cumulative asymmetry: pure QCD at NLO and NNLO (as
derived in this work), NLO prediction of Ref. [11] including EW corrections, as well as the PMC
scale-setting prediction of Ref. [11].

range of mtt̄ used for the calculation of the NNLO result, fixed and dynamic scales would lead

to consistent predictions within scale errors (see also recent discussion for the LHC [92]).

We conclude that the two scale-setting approaches produce very di↵erent predictions for

the mtt̄ cumulative ÂFB and it should be easy to distinguish between the two with data,

especially in the region around mtt̄ ⇠ 500GeV. We would also like to point out that the

NNLO prediction based on conventional scale-setting with µR = mt exhibits the “increasing-

decreasing” behaviour pointed out in Ref. [11], albeit much less pronounced than in the PMC

scale-setting approach.

5 Comparisons between di↵erent pdf sets

An alternative way of assessing the pdf dependence in theory predictions is to compare calcu-

lations with di↵erent pdf sets. In this section we compare NNLO QCD predictions based on

four state-of-the-art pdf sets: CT10, HERA 1.5, MSTW2008 and NNPDF 2.3. We compare

the central pdf members for central scale choice µF = µR = mt.
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Abstract: We present a comprehensive study of di↵erential distributions for Tevatron top-

pair events at the level of stable top quarks. All calculations are performed in NNLO QCD

with the help of a fully di↵erential partonic Monte-Carlo and are exact at this order in

perturbation theory. We present predictions for all kinematic distributions for which data

exists. Particular attention is paid on the top-quark forward-backward asymmetry which we

study in detail. We compare the NNLO results with existing approximate NNLO predictions

as well as di↵erential distributions computed with di↵erent parton distribution sets. Theory

errors are significantly smaller than current experimental ones with overall agreement between

theory and data.

1Preprint numbers: Cavendish-HEP-16/01, TTK-16-02

ar
X

iv
:1

60
1.

05
37

5v
1 

 [h
ep

-p
h]

  2
0 

Ja
n 

20
16

Prepared for submission to JHEP

NNLO QCD predictions for fully-di↵erential top-quark

pair production at the Tevatron

Micha l Czakon,a Paul Fiedler,a David Heymesb and Alexander Mitovb

aInstitut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen,

Germany
bCavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK

Abstract: We present a comprehensive study of di↵erential distributions for Tevatron top-

pair events at the level of stable top quarks. All calculations are performed in NNLO QCD

with the help of a fully di↵erential partonic Monte-Carlo and are exact at this order in

perturbation theory. We present predictions for all kinematic distributions for which data

exists. Particular attention is paid on the top-quark forward-backward asymmetry which we

study in detail. We compare the NNLO results with existing approximate NNLO predictions

as well as di↵erential distributions computed with di↵erent parton distribution sets. Theory

errors are significantly smaller than current experimental ones with overall agreement between

theory and data.

1Preprint numbers: Cavendish-HEP-16/01, TTK-16-02

ar
X

iv
:1

60
1.

05
37

5v
1 

 [h
ep

-p
h]

  2
0 

Ja
n 

20
16

arXiv:1601.05375 

Predictions for the cumulative front-back asymmetry.	
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Comparison of the PMC predictions for the fiducial cross section �fid(pp!
H ! ��) with the ATLAS measurements at various collision energies. The
LHC-XS predictions are presented as a comparison.

9

draw definite conclusion on the SM predictions. For the
ATLAS data at 8TeV, which is relatively of less experi-
mental uncertainty, it is found that the PMC prediction
show a much better agreement with the data.

F. An estimation of the fiducial cross section
σfid(pp → H → γγ)

With the integrated luminosity 4.5fb−1 for
√
S = 7

TeV, 20.3fb−1 for
√
S = 8 TeV, and 3.2fb−1 for

√
S =

13 TeV, the ATLAS group gives their prediction for the
fiducial cross sections (σfid) for the process pp → H →
γγ at different collision energies [48]. The fiducial cross-
section σfid can be written as

σfid(pp → H → γγ) = σInclBH→γγA, (20)

where A is the acceptance factor, whose values for dif-
ferent collision energies are [48], A|7TeV = 0.620± 0.007,
A|8TeV = 0.611±0.012 and A|13TeV = 0.570±0.006. The
BH→γγ is the branching ratio of H → γγ. By using the
Γ(H → γγ) under conventional scale-setting, the LHC-
XS group predicts BH→γγ = 0.00228 ± 0.00011 [3]. A
detailed PMC analysis for Γ(H → γγ) up to three-loop
levels have been given in Ref.[49]. Using the formulas
given there, we obtain Γ(H → γγ)|PMC = 9.34 × 10−3

MeV for MH = 125 GeV. Using this value together with
Higgs total decay width ΓTotal = (4.07 ± 0.16) × 10−3

GeV [3], we get BH→γγ |PMC = 0.00229± 0.00009. Thus
the main differences for the fiducial cross-section σfid is
from the differences of inclusive cross-section σIncl men-
tioned in the last subsection.

σfid(pp → H → γγ) 7 TeV 8 TeV 13 TeV

ATLAS data [48] 49± 18 42.5+10.3
−10.2 52+40

−37

LHC-XS [3] 24.7± 2.6 31.0± 3.2 66.1+6.8
−6.6

PMC prediction 30.1+2.3
−2.2 38.4+2.9

−2.8 85.8+5.7
−5.3

TABLE V: The fiducial cross section σfid(pp → H → γγ) (in
unit: fb) at the LHC with the collision energies

√
S =7, 8 and

13 TeV, respectively.

We put the PMC predictions for the fiducial cross sec-
tion σfid(pp → H → γγ) at the LHC with the collision
energies

√
S =7 TeV, 8 TeV and 13 TeV in Table V,

where the ATLAS measurements [48] and the LHC-XS
predictions [3] are presented. The PMC fiducial cross-
sections are larger than the LHC-XS ones by ∼ 22%,
∼ 24% and ∼ 30% for

√
S =7 TeV, 8 TeV and 13 TeV,

respectively. Table V shows no significant differences be-
tween the measured fiducial cross sections and the SM
predictions are observed within the current experimental
uncertainties. However, a better agreement of PMC pre-
dictions with the measurements at

√
S = 7 TeV and 8

TeV are observed. This performance can be more clearly
shown by Fig.(6), which presents the comparison of PMC
predictions for σfid(pp → H → γγ) with the ATLAS mea-
surements at various collision energies.
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FIG. 6: Comparison of the PMC predictions for the fiducial
cross section σfid(pp → H → γγ) with the ATLAS measure-
ments at various collision energies [48]. The LHC-XS predic-
tions [3] are presented as a comparison.

IV. SUMMARY

We have studied the Higgs boson hadroproduction
cross-sections by using the PMC scale-setting. The PMC
provides a systematic way to set the renormalization scale
of high-energy process, which has a solid theoretical foun-
dation and satisfies renormalization group invariance.
After applying the PMC scale-setting, the large renor-
malization scale uncertainties for the Higgs total and sep-
arate production cross-sections are eliminated simultane-
ously, and the scheme-and-scale ambiguities under con-
ventional scale-setting are cured. Taking the dominant
gluon-fusion channel as an example, Table II shows un-

der the conventional scale-setting, σ(gg)
Total = 18.76+12.69%

−11.41%

pb for [mH/2, 2mH ] and σ(gg)
Total = 21.14+11.45%

−11.26% pb for
[mH/4,mH ]. While, after applying the PMC, we get the

NNLO prediction σ(gg)
Total

∼= 23.61 pb for µr[mH/4, 2mH ].
Such renormalization scale-independence is reasonable,
since the αs running behavior, or equivalently the renor-
malization scale, at each perturbative order are precisely
fixed by using the RG-equation.

By combining relevant Higgs boson production modes
and the electroweak corrections into consideration, a
more precise predictions for inclusive pp → H produc-
tion cross-sections are obtained by using the PMC. The
inclusive cross-section increases with the increment of
the hadron collision energy. To compare with the LHC-
XS predictions with a guessing scale µr = mH , our
PMC predictions are increased by about 21%, 23% and
29% for

√
S =7 TeV, 8 TeV and 13 TeV, respectively,

which shows a better agreement with the latest LHC
ATLAS measurements, especially for the measurements
at

√
S =7 TeV and 8 TeV. A comparison with fidu-

cial cross sections has been presented in Table V, which
shows no significant differences between the measured

S-Q Wang, X-G Wu, sjb Preliminary
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D. A discussion of factorization scale dependence

After applying the PMC, the renormalization scale am-
biguity is eliminated. One of the remaining uncertainties
is from the choice of factorization scale. The determi-
nation of factorization scale is a separate issue, which
may be solved by matching nonpertubative bound-state
dynamics with perturbative DGLAP evolution [39–41].
Recently, by using the light-front holography [42, 43], it
has been shown that the matching of high-and-low scale
regimes of αs can determine the scale which sets the inter-
face between perturbative and nonperturbative hadron
dynamics [44, 45]. In the following, we adopt the usual
way of setting µf ∈ [mH/2, 2mH ] to do a prediction on
the factorization scale dependence.
Similar to top-pair hadroproduction [31], if the renor-

malization scale is well set, we have found that the usual
factorization scale dependence can also be largely sup-
pressed for Higgs hadroproduction. Taking the dominant
gluon-fusion channel as an example, under the conven-
tional scale-setting, we obtain

σ(gg)
Total|7TeV =

(
14.46+0.90

−0.85

)
pb,

σ(gg)
Total|8TeV =

(
18.76+1.23

−1.18

)
pb,

σ(gg)
Total|13TeV =

(
45.32+3.45

−3.50

)
pb,

where µr = mH , the central value is for µf = mH , and
the errors are for µf ∈ [mH/2, 2mH ]. After applying the
PMC scale-setting, we obtain

σ(gg)
Total|7TeV =

(
18.27+0.33

−0.83

)
pb,

σ(gg)
Total|8TeV =

(
23.61+0.27

−0.94

)
pb,

σ(gg)
Total|13TeV =

(
56.48−0.65

−1.10

)
pb.

Those results show the factorization scale dependence
can be suppressed due to a proper correlation of large
log-terms concerning the renormalization and factoriza-
tion scales, i.e. lnµ2

r/m
2
H and lnµ2

f/m
2
H .

Tevatron LHC√
S 1.96 TeV 7 TeV 8 TeV 13 TeV 14 TeV

Conv. 0.63+0.13
−0.11 13.92+2.25

−2.06 18.13+2.87
−2.66 44.26+6.61

−6.43 50.33+7.47
−7.31

PMC 0.86+0.13
−0.12 18.04+1.36

−1.32 23.43+1.65
−1.59 56.34+3.45

−3.00 63.94+3.88
−3.30

TABLE III: Scale uncertainties of σggH (in unit: pb) under
the conventional (Conv.) and PMC scale-settings, which are
caused by varying µr ∈ [mH/2, 2mH ] and µf ∈ [mH/2, 2mH ].

We use σggH to stands for the sum of the cross-sections σ(ij)
Total

with (ij) = (gg), (qq̄), (gq), (gq̄), (qq′), respectively.

As a summary, we present total hadronic cross-section
σggH at the Tevatron and LHC in Table III, where the
errors are for µr ∈ [mH/2, 2mH ] and µf ∈ [mH/2, 2mH ].
For convenience, we adopt σggH to stand for the sum

of the cross-sections σ(ij)
Total with (ij) = (gg), (qq̄), (gq),

(gq̄) and (qq′), respectively. The errors are squared aver-
ages of the ones for all the hadronic production channels.
To compare with the total hadronic cross-sections under
conventional scale-setting, the central values of the PMC
ones are increased by ∼ 37% at the Tevatron, and by
∼ 30% at the LHC for

√
S =7, 8, 13 and 14 TeV, respec-

tively. After applying the PMC, the main uncertainty is
from the choice of factorization scale which is generally
smaller than the conventional ones.

E. An estimation of total inclusive cross-section for
the Higgs production at the LHC

To compare with the recent LHC measurements on
the Higgs boson production cross-section [4], in addi-
tion to the above considered hadronic channels (σggH),
the contributions from other production modes, such as
the vector-boson fusion production process, the WH/ZH
Higgs associated production process, the associated
Higgs production with heavy quarks and etc. (we use
σxH to stands for the sum of those cross-sections. Here x
stands for Z+W+tt̄+bb̄+· · ·), and the electroweak cor-
rections (we use σEW to stand for its cross-section),
should also be taken into consideration as a sound pre-
diction. Then the total inclusive cross-section (σIncl) for
pp → HX production equals, σggH + σxH + σEW. The
value of σxH and σEW are small in comparison to the
dominant σggH. For example, if

√
S = 8 TeV and setting

mH = 125 GeV, we have σxH = 3.08+0.10 pb [3, 4]; the
electro-weak correction up to two-loop level only leads to
a +5.1% shift with respect to the NNLO QCD cross sec-
tions [46, 47]. Thus, we directly adopt their values under
conventional scale-setting which have been collected in
Refs.[3, 4, 46, 47] to do our prediction.

√
S 7 TeV 8 TeV 13 TeV

ATLAS(H → γγ) [4] 35+13
−12 30.5+7.5

−7.4 40+31
−28

ATLAS(H → ZZ∗ → 4l) [4] 33+21
−16 37+9

−8 12+25
−16

LHC-XS [3] 17.5± 1.6 22.3± 2.0 50.9+4.5
−4.4

PMC predictions 21.21+1.36
−1.32 27.44+1.65

−1.59 65.72+3.46
−3.01

TABLE IV: Total inclusive cross-sections (in unit: pb) for
the Higgs production at the LHC with the collision energies√
S = 7, 8 and 13 TeV, respectively. The inclusive cross-

section σIncl = σggH + σxH + σEW.

We present the total inclusive cross-section σIncl at the
LHC with several collision energies in Table IV, where
the LHC ATLAS measurements [4] performed via the
H → γγ and H → ZZ∗ → 4l decay channels are pre-
sented. The SM results predicted by LHC-XS group [3]
is included as a comparison. The inclusive cross-section
increases with the increment of the hadron collision en-
ergy. To compare with the LHC-XS predictions [3], our
PMC results are increased by about 21%, 23% and 29%
for

√
S = 7, 8 and 13 TeV, respectively. Because of large

uncertainty for the ATLAS data, we need more data to

S-Q Wang, X-G Wu, sjb Preliminary
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The gluon-fusion cross-section �(gg)
m (in unit: pb) using the conventional and

PMC scale-settings at

p
s = 8 TeV, where five typical initial scales µr = mH/4,

mH/2, mH , 2mH , 4mH are adopted. µf = mH .
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FIG. 2: Two PMC scales versus the subprocess center-of-
mass energy

√
s for the dominant (gg)-channel. mH = 125

GeV and µr = µf = mH .

(gq)-channel or (gq̄)-channel, the improvement is ob-
vious: Their large NNLO contributions under conven-
tional scale-setting, i.e. the magnitudes of NNLO-terms
are even larger than the NLO-terms, become reasonably
smaller by applying the PMC. This indicates that only
the conformal terms in (gq)-channel or (gq̄)-channel sat-
isfy the usual requirement of pQCD convergence. As
for the dominant (gg)-channel, in different to our previ-
ous PMC examples, the pQCD convergence up to NNLO
level do not show explicit improvement even by applying
the PMC. This can be explained by the properties of the
two PMC scales Qgg

1 and Qgg
2 . The LO PMC scale Qgg

1
is fixed to be mH . This is due to the fact that the non-
conformal coefficients rgg2,1(s,M,R) and rgg3,2(s,M,R) are
always accompanied by the log-term ln(µ2

r/m
2
H), and the

elimination of non-conformal terms is equivalent to the
elimination of those log-terms, and the LO PMC scale is
then fixed to bemH no matter what initial scale has been
chosen. The NLO PMC scale Qgg

2 is determined by the
non-conformal coefficient rgg3,1(s,M,R), which is a func-
tion of the subprocess center-of-mass energy (

√
s). More

explicitly, we present the PMC scales Qgg
1 and Qgg

2 ver-
sus the subprocess center-of-mass energy

√
s in Fig.(2).

Fig.(2) shows Qgg
2 increases with the increment of

√
s,

which is consistent with its QED analog from the GM-L
scale-setting approach. The value of Qgg

2 at the threshold
region is smaller than mH , then, larger cross-sections at
the NLO and NNLO levels, and hence larger total cross-
sections, are observed in comparison to the ones under
conventional scale-setting.
Table I shows the pQCD convergence for this particu-

lar process can not be improved by applying the PMC,
indicating a large conformal term even at the NNLO or-
der. Thus a NNNLO or higher calculation is important.
A NNNLO analysis for the dominant gluon-fusion chan-
nel has been done in the literature [10], which does find
a small NNNLO contribution even under conventional

scale-setting, recovering the pQCD convergence at this
level. At present, such an NNNLO calculation is not
available for a PMC analysis, which shall be helpful for
determining more accurate PMC scales Qgg

2,3. However
as will be shown in following subsections, we can achieve
an accurate prediction for the Higgs boson production at
the NNLO level by applying the PMC regardless of its
weaker improvement of pQCD convergence 2.

B. An analysis of renormalization scale dependence
before and after the PMC scale-setting

In the following, we adopt the dominant gluon-fusion
production channel as an explicit example to show how
the renormalization scale dependence is changed before
and after the PMC scale-setting.

Conventional PMC

µr LO NLO N2LO Total LO NLO N2LO Total

mH/4 9.42 10.64 3.50 23.56 6.02 9.58 8.01 23.61

mH/2 7.43 8.89 4.82 21.14 6.02 9.58 8.01 23.61

mH 6.02 7.53 5.21 18.76 6.02 9.58 8.01 23.61

2mH 4.98 6.45 5.19 16.62 6.02 9.58 8.01 23.61

4mH 4.19 5.58 4.95 14.35 6.02 9.58 8.01 23.61

TABLE II: The gluon-fusion cross-section σ(gg)
m (in unit: pb)

under the conventional and PMC scale-settings with the col-
lision energy

√
S = 8 TeV, where five typical initial scales

µr = mH/4, mH/2, mH , 2mH , 4mH are adopted. µf = mH .

We put the gluon-fusion cross-sections with the col-
lision energy

√
S = 8 TeV under conventional and

PMC scale-settings in Table II, where five typical ini-
tial scales µr = mH/4, mH/2, mH , 2mH , and 4mH

are adopted. Table II shows σ(gg)
Total = 18.76+12.69%

−11.41%

pb for µr ∈ [mH/2, 2mH ]; σ(gg)
Total = 21.14+11.45%

−11.26% pb
for µr ∈ [mH/4,mH ]. Those NNLO predictions are
consistent with the NNNLO ones within errors [10]:

σ(gg)
Total = 18.90+3.08%

−5.02% pb for µr ∈ [mH/2, 2mH ] and

σ(gg)
Total = 19.47+0.32%

−2.99% pb for µr ∈ [mH/4,mH ]. This
shows by including the NNNLO-terms, the renormaliza-
tion scale uncertainty for total cross-sections can indeed
be improved, e.g. if setting µr ∈ [mH/2, 2mH ], the scale
uncertainty changes down from 24% to 8%; and if setting
µr ∈ [mH/4,mH ], the scale uncertainty changes down
from 23% to 3%.

Fig.(3) shows how the pQCD prediction for the to-
tal Higgs production cross-section changes when more-

2 We emphasize here that the purpose of PMC is to solve the
renormalization scheme-and-scale ambiguities, the improvement
of pQCD convergence is a natural byproduct due to elimination
of divergent renormalon terms, which however may not work well
for the processes with divergent conformal terms.

�gg(pp! HX)S-Q Wang, X-G Wu, sjb Preliminary
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ ̸= 0, ν ̸= 0 and
λ ̸= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

4

Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds
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Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

Double Initial-State Interactions  
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ ̸= 0, ν ̸= 0 and
λ ̸= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

PQCD Factorization (Lam Tung):

41

small 
scale



• Renormalization scale “unphysical”:  No optimal physical scale!

• Can ignore possibility of multiple physical scales!

• Accuracy of PQCD prediction can be judged by taking arbitrary 
guess                 with an arbitrary range  !

• Factorization scale should be taken equal to renormalization 
scale

42

Myths concerning scale setting

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

⇤H(x,✏k�, �i)

pH

x,✏k�

These assumptions are untrue in QED  
and thus they cannot be true for QCD

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

⇤H(x,✏k�, �i)

pH

x,✏k�

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

⇤H(x,✏k�, �i)

pH

x,✏k�

Clearly heuristic. Wrong in QED. Scheme dependent!
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Essential Points
• Physical Results cannot depend on choice of Scheme!

• Different PMC scales at each order!

• No scale ambiguity!!

• Series identical to conformal theory!

• Relation between observables scheme independent, 
transitive!

• Choice of initial scale irrelevant even at finite order!

• Identify β terms using Rδ method  



Relate Observables to Each Other

• Eliminate intermediate scheme!

• No scale ambiguity !

• Transitive!!

• Commensurate Scale Relations!

• Conformal Template!

• Example: Generalized Crewther Relation
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Generalized Crewther Relation 
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Generalized Crewther Relation!

Conformal relation true to all orders in 
perturbation theory! 

No radiative corrections to axial anomaly 
Nonconformal terms set relative scales (BLM)#

No renormalization scale ambiguity!

Lu, Kataev, Gabadadze, Sjb

Both observables go through new quark thresholds 
at commensurate scales!
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Transitivity Property of Renormalization Group

A B

C

A      C C      B A       B identical to 

Relations between observables must be independent of intermediate 
scheme 

Violated by PMS!

H. J. Lu, 
sjb



9th Summer School in Theoretical Physics, Chongqing, Matin Mojaza

Commensurate Scale Relations (CSR)
Special degeneracy holds for any scheme (see exercise)

PMC scales in physical schemes => CSR between physical observables

aA(Q) = aB(Q1[Q]) + rAB
2,0 aB(Q2[Q])2 + rAB

3,0 aB(Q3[Q])3 + · · ·

Measuring A at a scale Q predicts value of B to leading order at the scale Q1[Q]

Exact in special case, e.g.: ↵⌧!⌫⌧+h(M
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Highly non-trivial QCD prediction free of scheme- and scale-ambiguities!
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Figure 6: Leading order CSRs derived by Ref. [23] for various renormalization schemes that
are defined through corresponding physical observables. Here ↵V (Q) stands for the e↵ective
coupling defined from the heavy quark potential V (Q2) = �4⇡↵V (Q)/Q2.

Bjorken sum rule for polarized electroproduction are automatically absorbed into the renormalization
scales [23]. Then, the final perturbative series becomes quite simple:

b↵g1(Q) = b↵R(Q
⇤)� b↵2

R(Q
⇤⇤) + b↵3

R(Q
⇤⇤⇤), (120)

where b↵ = (3CF/4⇡)↵, Q⇤, Q⇤⇤ and Q⇤⇤⇤ are LO, NLO and NNLO BLM scales accordingly, and the
two e↵ective couplings ↵R and ↵g1 are defined in Eqs.(37,38). This equation is called the generalized
Crewther relation. The coe�cients in CSR can be identified with those obtained in conformally invariant
gauge theories as proven by Crewther [94, 95, 96, 97, 98].

The CSR between observables can be tested at quite low momentum transfers, even at where pQCD
expansion would be expected to break down [23]. It is likely that some of the higher twist contributions
common to the two observables are also correctly represented by CSR. In contrast, expansions of any
observable in ↵MS(Q) must break down at low momentum transfer since ↵MS(Q) becomes singular at
Q = ⇤MS. For example, in the ’t Hooft scheme [50] where the higher order �n = 0 for n = 2, 3, ...,

↵MS(Q) has a simple pole at Q = ⇤
0tH�MS
QCD . The CSR allows one to test QCD without explicit reference

to renormalization schemes such as MS. It is thus reasonable to expect that the perturbative series will
be more convergent when one relates finite observables to each other.

As a summary, the key point of the CSR lies in that the scale displacement between di↵erent
renormalization schemes is unique and does not depend on any intermediate scheme, as is shown in
Fig.(6).

The above discussion on CSR is performed at LO level. In general, such scale relation (116) can be
extended to any perturbative order. That is, even though the scale values maybe changed from their LO
values because of the higher-order corrections, the relative relation among the scales must be remained
unchanged due to the transitivity property of the BLM scale setting. As a demonstration, one needs to
clarify the following two points :

• The LO BLM scale itself is a perturbative series with higher perturbative terms coming from a
higher-order calculation of the physical observable, then we need to show that the scale relation
(116) is always right for LO BLM scale after including those higher-order terms.

• We should have similar scale relations for other higher order BLM scales, such as NLO, NNLO
BLM scales.
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2. BLM/PMC-scale setting up to NNLO

Basic features of BLM/PMC

• It satisfies the mentioned properties: Existence, Unitary, 
Transitivity, Reflexivity.

• All non-conformal and scheme-dependent E-terms in 
perturbative series are summed into running coupling. The
resultant is scheme-independent.

• Renormalons growing as (n! EmDs
n) are avoided.

• The PMC method agrees with the standard QED results in 
the Nc-> 0 limit. 

LO BLM/PMC scale setting can be found in references, where

only the nf-terms/E0-terms at NLO are needed.
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Features of BLM/PMC

• Predictions are scheme-independent at every order!

• Matches conformal series!

• Commensurate Scale Relations between observables: Generalized Crewther Relation   
(Kataev, Lu, Rathsman, sjb)!

• No n! Renormalon growth!

• New scale appears at each order; nF determined at each order - matches virtuality of 
quark loops!

• Multiple Physical Scales Incorporated (Hoang, Kuhn, Tuebner, sjb)!

• Rigorous: Satisfies all Renormalization Group Principles!

• Realistic Estimate of Higher-Order Terms!

• Same as Gell-Mann Low for QED !

• GUT: Must use the same scale setting procedure for QED, QCD!

• Eliminates unnecessary theory error!

• Maximal sensitivity to new physics!

• BLM: 1039 citations. Example: BFKL intercept (Fadin, Kim, Lipatov, Pivovarov, sjb)

NC ! 0

51



Problems with traditional scale setting

• Predictions are scheme-dependent!  At every order!  This fundamental flaw 
does not get repaired at high orders!

• Fails to satisfy Renormalization Group Principles!

• Guessing the scale and range is heuristic!

• Gives wrong predictions for QED  !

• GUT: Must use the same scale-setting procedure for QED, QCD!

• n! Renormalon growth — no convergence of pQCD!

• Uses the same scale at each order.  !

• nf does not reflect quark loop virtuality!

• Multiple Physical Scales cannot be Incorporated!

• Unrealistic Estimate of Higher-Order Terms: Only β-terms exposed by scale 
variation!

• Introduces an unnecessary theory error!!

• Distinctly different predictions for pQCD observables!

• Obscures sensitivity to new physics

See: Czakon, Fiedler, Heymes, Mitov
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Factorization Scale

• Factorization scale not the same as the renormalization 
scale!

• Factorization scale  ambiguity even for conformal theory    
β =0!

• Use AdS/QCD!

• Factorization Scale Q0: Boundary between 
nonperturbative and perturbative QCD

53



Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative

0

0.2

0.4

0.6

0.8

1

10
-1

1 10

Q (GeV)

α
g
1
(Q

)/
π

Transition scale Q0

Perturbative QCD!
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD !
(Quark Confinement)

All-Scale QCD Coupling

e�
Q2

42

Deur, de Tèramond, sjb
m⇢ =

p
2

mp = 2

� ⌘ 2

⇤MS = 0.341± 0.024 GeV

⇤MS = 0.339± 0.016 GeV

Expt:

 = 0.513± 0.007 GeV
Fit to Bj + DHG Sum Rules:

Q0 = 0.87± 0.08 GeV MS scheme
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Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Preserves Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique !
Confinement Potential!

!
de Tèramond, Dosch, sjb

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	
without affecting conformal invariance of action!• Fubini, Rabinovici:

e'(z) = e+2z2

 ' 0.5 GeV
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�
� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM ) Same κ!

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

both chiralities 

Superconformal  
Quantum Mechanics 
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Figure 2: Supersymmetric meson-nucleon partners: Mesons with S = 0 (red triangles) and
baryons with S = 1

2 (blue squares). The experimental values ofM2 are plotted vs LM = LB+1.

The solid line corresponds to
√
λ = 0.53 GeV. The π has no baryonic partner.

between λB and λM . Only confirmed PDG states are included [23].

4.2 The Mesonic Superpartners of the Delta Trajectory

The essential physics derived from the superconformal connection of nucleons and

mesons follows from the action of the fermion-number changing supercharge operator

Rλ. As we have discussed in the previous section, this operator transforms a baryon with

angular momentum LB into a superpartner meson with angular momentum LM = LB+1

(See Appendix B), a state with the identical eigenvalue – the hadronic mass squared.

We now check if this relation holds empirically for other baryon trajectories.

We first observe that baryons with positive parity and internal spin S = 3
2 , such as

the ∆
3

2

+

(1232), and baryons with with negative parity and internal spin S = 1
2 , such

as the ∆
1
2

−

(1620), lie on the same trajectory; this corresponds to the phenomenological

assignment ν = LB + 1
2 , given in Table 1. From (12) we obtain the spectrum 10

M2(+)

n,LB,S= 3
2

= M2(−)

n,LB,S= 1
2

= 4

(

n+ LB +
3

2

)

λB. (44)

10For the ∆-states this assignment agrees with the results of Ref. [24].

14

Superconformal AdS Light-Front Holographic QCD (LFHQCD): 	
Identical meson and baryon spectra!

Meson-Baryon !
Mass Degeneracy !

for LM=LB+1

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

M2
meson

M2
nucleon

=
n + L

M

n + L
B

+ 1
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

Fit to the slope of Regge trajectories, 	
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

Dosch, de Teramond, Lorce, sjb

mu = md = 46 MeV, ms = 357 MeV
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Features of Supersymmetric Equations

• J =L+S baryon simultaneously satisfies both 
equations of G with L , L+1 for same mass 
eigenvalue!

• Jz =  Lz + 1/2 = (Lz + 1) - 1/2!

• Baryon spin carried by quark orbital angular 
momentum:  <Jz> =Lz+1/2!

• Mass-degenerate meson “superpartner” with 
LM=LB+1.! “Shifted  meson-baryon Duality”

Meson and baryon have same

Sz = ±1/2

 !

Pion is massless for mq =0



Tony Zee	
!

"Quantum Field Theory in a Nutshell"	
!

Dreams of Exact Solvability

m⇢

mP
= 1p

2

Light-Front Holography:

⇤MS

m⇢
= 0.455± 0.031

“In other words, if you manage to calculate mP it better come out pro-

portional to ⇤QCD since ⇤QCD is the only quantity with dimension of mass

around.

Similarly for m⇢.

Put in precise terms, if you publish a paper with a formula giving m⇢/mP in

terms of pure numbers such as 2 and ⇡, the field theory community will hail

you as a conquering hero who has solved QCD exactly.”

(mq = 0)
m⇡ = 0

m⇢ ' 2.2 ⇤MSmp ' 3.21 ⇤MS

!
de Tèramond, Dosch, sjb
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•Can be used as standard QCD coupling	

•Well measured	

•Asymptotic freedom at large Q2	

•Computable at large Q2 in any pQCD 
scheme	

•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q

2)� g

en
1 (x,Q

2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡

]
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5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb
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�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS
Modified AdS

Lattice QCD (2004) (2007)
�g1/� Hall A/CLAS
�g1/� JLab CLAS

�F3/�GDH limit

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2
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Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative
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Transition scale Q0

Perturbative QCD!
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD !
(Quark Confinement)

All-Scale QCD Coupling

e�
Q2

42

Deur, de Tèramond, sjb
m⇢ =

p
2

mp = 2

� ⌘ 2

⇤MS = 0.341± 0.024 GeV

⇤MS = 0.339± 0.016 GeV

Expt:

 = 0.513± 0.007 GeV
Fit to Bj + DHG Sum Rules:

Q0 = 0.87± 0.08 GeV MS scheme
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Future Directions for AdS/QCD
• Hadronization at the Amplitude Level 

• Diffractive dissociation of pion and proton to jets 

• Factorization Scale for ERBL, DGLAP evolution: Q0 

• Calculate Sivers Effect including FSI and ISI 

• Compute Tetraquark Spectroscopy:  Sequential Clusters 

• Update SU(6) spin-flavor symmetry 

• Heavy Quark States:  Supersymmetry, not conformal 

• Compute higher Fock states; e.g. Intrinsic Heavy Quarks 

• Nuclear States — Hidden Color 

• Basis LF Quantization 

!

!
de Tèramond, Dosch, Lorce, sjb

!
Vary, sjb
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QCD Myths
• Anti-Shadowing is Universal 

• ISI and FSI are higher twist effects and universal 

• High transverse momentum hadrons arise only from 
jet fragmentation  -- baryon anomaly! 

• heavy quarks only from gluon splitting 

• renormalization scale cannot be fixed 

• QCD condensates are vacuum effects 

• Infrared Slavery 

• Nuclei are composites of nucleons only 

• Real part of DVCS arbitrary
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Results

4

5

6

7

8

9

10

10
-2

10
-1

x⊥

nex
p

√s=38.8/31.6 GeV E706
√s=62.4/22.4 GeV PHENIX/FNAL
√s=200/62.4 GeV PHENIX
√s=900/500 GeV UA1
√s=1800/630 GeV CDF
√s=1800/630 GeV CDF 2
√s=1800/630 GeV CDF γ
√s=1800/630 GeV D0 γ
√s=1800/630 GeV CDF jets
√s=1800/630 GeV D0 jets

Significant increase of the hadron nexp with x
⊥

nexp ≃ 8 at large x
⊥

Huge contrast with photons and jets !
nexp constant and slight above 4 at all x

⊥

Francois Arleo (LAPTH) Higher-twist in hadron production Moriond QCD 2010 7 / 15

Photons and Jets 
agree with PQCD 

xT scaling!
Hadrons do not!

E
d⇤

d3p
(pp� HX) =

F (xT , �cm = ⇥/2)
pn

T

Arleo,Hwang, Sickles, sjb
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94 D.Sivers et a!., Large transverse momentum processes
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Fig. 5.6.2. Plots ofNeff and Feff from the ISR—BS and FNAL—CP data for charged particles. The FNAI. energy pairs are
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Figure 7: (left) p/π and p̄/π ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for π± (π0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ γ+q , (4.3)

with q+ q̄→ γ + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from π0 → γ+ γ and η → γ+ γ decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a π0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius Δr =
√

(Δη)2+(Δφ)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter (Δη×Δφ ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent γ and π0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4

11

!
Particle ratio changes with centrality! 
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Figure 7: (left) p/π and p̄/π ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for π± (π0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ γ+q , (4.3)

with q+ q̄→ γ + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from π0 → γ+ γ and η → γ+ γ decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a π0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius Δr =
√

(Δη)2+(Δφ)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter (Δη×Δφ ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent γ and π0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4

11

Peripheral  

Central  

!
Protons less absorbed  !

in nuclear collisions than pions !
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Two(parBcle(correlaBons:(CMS(results(

�Discovery� 

!  Ridge: Distinct long range correlation in η collimated around ΔΦ≈ 0 
                  for two hadrons in the intermediate 1 < pT, qT < 3 GeV   

Raju Venugopalan

78



u d

d
du

u
u d

d
du

u Quark-Gluon
Plasma

1-2013
8825A7

Emitted
Hadrons

High PT

Highest dN
dd dq

(a) (b) (c)

uu

u

uu

u

Possible origin of same-side CMS ridge in p p Collisions

Bjorken, Goldhaber, sjbThe key point is that a multi-particle correlation should give a much more conspicuous signal

than the two-particle correlation used so far in the experimental analysis, but of course only

in that small fraction of the events where the prerequisite conditions of coincidence of narrow

strings in the projectile and target are in fact obtained. To be specific, we suggest looking at

the following vector ~V , computing its magnitude for each event. If the number of events with

large magnitude are greater than expected from chance, one would have powerful evidence

for the proposed colliding flux tube mechanism. Define

~V =
NX

i=1

[cos 2�ix̂+ sin 2�iŷ] , (1)

and obtain the distribution of ~V 2. If the particles were distributed randomly in �, then the

expectation value of ~V 2 would be N , where N is the number of particles in the event in

the given region of transverse momentum. The probability of getting a value N2 may be

estimated by introducing quadrants in the variable 2�: Assume each vector can take only

the values ±x̂ or ±ŷ, with each having a probability 1/4. Suppose the first vector is +x̂.

Then the chance that the remainder would all be in the same direction would be (1/4)N�1.

For N = 5, this would yield a probability 1/256. If, among events in which the ridge was

seen, with more than 110 particles per event, and 5 particles separated from each other by

about one unit in �⌘ in an interval of p? between 1 and 2 GeV/c, as many as 2% of the

events should show ~V 2 ⇡ 25, that could be evidence for the kind of correlation we suggest.

This exercise is equivalent to asking the probability – assuming complete randomness in � –

that all 5 particles are in either of two opposite octants of �. If they were more collimated

than that, the probability would be even smaller.

It is likely that insistence on rapidity separation of emerging particles by one unit is

unnecessary: If there were only short-range correlations, then the value of ~V 2 inevitably

would lie far below its allowed maximum. Thus counting all particles in each event in the

specified range of transverse momentum, regardless of rapidity separation, should give a

reliable measure of the correlation. Technically, ~V is just the square of the usual ellipticity

variable. An advantage of squaring is that maximal ellipticity events are easy to pick out.

Also, it is easier to think about such a scalar variable rather than a vector variable.

At this point let us take a step back to gain perspective on what could cause such

phenomena. Obviously projectile and target must overlap in impact parameter to some

extent. Dynamics, in the form of conservation of momentum or of attraction of outgoing

6
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We suggest that this “ridge”-like correlation may be a 
reflection of the rare events generated by the collision of 
aligned flux tubes connecting the valence quarks in the wave 
functions of the colliding protons. !
!
The “spray” of particles resulting from the approximate line 
source produced in such inelastic collisions then gives rise to 
events with a strong correlation between particles produced 
over a large range of both positive and negative rapidity. 

Possible multiparticle ridge-like 
correlations in very high multiplicity 
proton-proton collisions

Bjorken, Goldhaber, sjb
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Proton 5-quark Fock State : 
Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb 
Polyakov, et al. 

 

Fixed LF time

xQ � (m2
Q + k2

�)1/2

Q

Q

QCD predicts  
Intrinsic Heavy 

Quarks at high x!

Minimal off-
shellnessUse AdS/QCD LFWF
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J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for Intrinsic Charm

Measurement of Charm Structure  
Function! 

DGLAP / Photon-Gluon Fusion: factor of 30 too small

factor of 30 !

Two Components (separate evolution):

c(x,Q

2) = c(x, Q

2)
extrinsic

+ c(x, Q

2)
intrinsic

gluon splitting 
(DGLAP)

Hoyer, Peterson, Sakai, sjb
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Ratio insensitive 
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scales
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Signal for significant 
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at x > 0.1 

Measurement of !þ bþ X and !þ cþ X Production Cross Sections
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Intrinsic Charm Mechanism for Inclusive  
High-XF Higgs Production

H

Higgs can have > 80% of Proton Momentum!

Also: intrinsic strangeness, bottom, top
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New production mechanism for Higgs
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Figure 3: The cross section of inclusive Higgs production in fb, coming

from the nonperturbative intrinsic bottom distribution, at both LHC

(
√

s = 14 TeV, solid curve) and Tevatron (
√

s = 2 TeV, dashed curve)

energies.

that the cross section for inclusive Higgs production from intrinsic bottom is much

higher than the one coming from intrinsic charm. Although it is true that the Higgs-

quark coupling, proportional to mQ, cancels in the cross section with PIQ ∝ 1/m2
Q,

the matrix element between IQ and Higgs wave functions has an additional mQ factor.

This is because the Higgs wave function is very narrow and the overlap of the two

wave functions results in ΨQQ(0) ∝ mQ. Thus, the cross section rises as m2
Q, as we

see in the results.

We can compare our predictions for inclusive Higgs production coming from

IB with our previous ansatz for the Higgs production gluon-gluon fusion process

xdN/dx = 6(1 − x)5. At the maximum (xF = 0.9) of the IB curve we get a value of

roughly 50 fb, while there gluon-gluon gives 0.067 fb. Thus this high-xF region is the

ideal place to look for Higgs production coming from intrinsic heavy quarks.

We obtain essentially the same curves for Tevatron energies (
√

s = 2 TeV) , al-

though the rates are reduced by a factor of approximately 3.

We also show in Fig.4 the results for Higgs production coming from the perturba-

tive charm distribution. The magnitude of the production cross section is considerably

12

Intrinsic Heavy Quark Contribution  to 
Inclusive Higgs Production⌅ = t + z/c

d⇤
dxF

(pp ⇥ HX)[fb]
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⇥

p

Goldhaber, Kopeliovich, Schmidt, sjb
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